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Loading surface of a directionally solidified material (DS)
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001 For a DS material, all the
grains have a common
crystal axis, say (001). The
orientation of each grain is
then defined by one angle
around this axis.

Assuming that elasticity is
uniform, the stress is also
uniform during the elastic
phase.
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Yield surface for DS material with 3 orientations
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Orientations of the
grains: 0, 30, 60
degrees

More slip directions in the plane σ11–σ12: the model turns out to become
similar to von Mises/Tresca
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Yield surface for DS material with 3 orientations
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grains: 0, 30, 60
degrees

Try an other set HERE

No additional slip activated by shear in the plane σ33–σ13: the yield
stress in shear remains high, and sharp corners are still present
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Loading surface of a polycrystalline material

x
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The orientation of a grain is
defined by a set of three
Euler angles, (φ1, Φ, φ2)

Assume an uniform elasticity
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Yield surface for a polycristalline aggregate with 100

orientations
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A favourably oriented
plane can be found for
any direction in the
σ11–σ12 plane

Tresca like criterion is obtained for plane σ11–σ12
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Yield surface for a polycristalline aggregate with 100

orientations
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A favourably oriented
plane can be found for
any direction in the
σ33–σ31 plane

Try an other set HERE

Tresca like criterion is obtained for plane σ33–σ31
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Various scales in heterogeneous material modeling

(a) Microstructure calculations: take into account local phases and local
equilibrium (Next two lectures )

(b) Uniform field models: take into account local phases only (This
lecture )

(c) Macroscopic models: do not account for local phases nor local
equilibrium
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Computations at various scales

Black box Realistic aggregate Intermediate level
Averaging
process
(2) phase by phase
(2’) grain by grain

Level (1) Level (3) Level (2) or (2’)
Macroscopic models Local information Local average
Average stress and Respect local Respect local

strain tensor Constitutive Equations Constitutive Equations
Equilibrium no neighbooring effect

Lectures 4 & 5 This lecture
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Definitions used in the transition rules

Phase characteristics

Chemical composition, shape, crystallographic orientation
f g is the volume fraction of the phase g
The choice of the representation of a phase is driven by the contrast
between properties. Two phase polycristal→ two phases,
discriminating by the chemical nature, or the crystal network; one
phase polycristal→ N crystallographic phases

Notations:

Stress in the phase g, macroscopic stress: σ
∼

g , σ
∼

=
∑

g f g
σ
∼

g

Strain in the phase g, macroscopic strain: ε
∼

g , ε
∼

=
∑

g f g
ε
∼

g

For an uniform local elasticity, the macroscopic plastic strain is also
the average of the local plastic strains: ε

∼

p =
∑

g f g
ε
∼

pg
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Rules used for the scale transition in uniform field models

Static, uniform stress, σ
∼

g = σ
∼

From Taylor to Kröner

Taylor [Taylor, 1938], uniform plastic strain, ε
∼

pg = ε
∼

p

Lin–Taylor [Lin, 1957], uniform total strain, ε
∼

g = ε
∼

Kröner [Kröner, 1971], elastic accommodation σ
∼

g = σ
∼

+µ(ε
∼

p
−ε

∼

pg )

Tangent and secant approximations

Hill [Hill, 1965], elastoplastic accommodation
σ̇
∼

g = σ̇
∼

+ L
∼

∼

? : (ε̇
∼

− ε̇
∼

g )

Berveiller–Zaoui [Berveiller and Zaoui, 1979] estimation, with α

varying typically between 1 and 0.001 (isotropic elasticity, spherical
inclusions) σ

∼

g = σ
∼

+ µα(ε
∼

p
− ε

∼

pg )

Viscous and viscoplastic scheme

Budianski, Hutchinson, Molinari,...
[Hutchinson, 1966a, Molinari et al., 1987a]
Translated fields [Sabar et al., 2002],

σ̇
∼

g = σ̇
∼

+ 2µ(1 − β)(
5η

3η + 2ηg
ε̇
∼

v
− ε̇

∼

vg )

Parametric scale transition rule

Cailletaud, Pilvin , β–model
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Hill’s self–consistent model

Real aggregate

Modelled as a collection of
auxiliary problems

...

implicit problem, since the
HEM is not known

σ̇
∼

= Σ̇
∼

+ L
∼

∼

? : (Ė
∼

− ε̇
∼

)

with L
∼

∼

?, accommodation tensor:

L
∼

∼

? = L
∼

∼

eff : (S
∼

∼

−1
− I

∼

∼

)

(L
∼

∼

+ L
∼

∼

?) : ε̇
∼

= (L
∼

∼

eff + L
∼

∼

?) : Ė
∼

t

σ̇
∼

= L
∼

∼

: (L
∼

∼

+ L
∼

∼

?)−1 : (L
∼

∼

eff + L
∼

∼

?) : Ė
∼

So that :

L
∼

∼

eff =< L
∼

∼

: (L
∼

∼

+L
∼

∼

?)−1 : (L
∼

∼

eff+L
∼

∼

?) >
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Physical meaning of Berveiller–Zaoui rule
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Incompressible plastic
flow

Radial loading path

General expression, using
µ′, actual shear modulus,
β′ =
2(4 − 5ν′)/15(1 − ν′)

σ̇
∼

g = σ̇
∼

+ 2µ
µ′(1 − β′)

β′µ + (1 − β′)µ′
(ε̇
∼

p
− ε̇

∼

pg )

Pure tension, assuming ν = 1/2 and introducing H = σ/εp:

σ̇g = σ̇ +
µH

H + 2µ
(ε̇p

− ε̇pg )

Onset of plastic flow: Kröner’s rule

The accommodation factor C = (σg
− σ)/(εp

− εpg ) decreases when
plastic strain increases
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Introduction of a parametric scale transition rule

The local stress decrease when the grain becomes more plastic than
the matrix

σ
∼

g = σ
∼

+ C
(

B
∼

− β
∼

g
)

B
∼

=
∑

g

fg β
∼

g

fg is the volume fraction of phase g, β
∼

g characterizes the state of
redistribution

New interphase accommodation variables β
∼

g , with a kinematic

evolution rule [Cailletaud 87]

- rule 1: β̇
∼

g
=ε̇

∼

g
− D ε̇g

eqβ
∼

g

- rule 2: β̇
∼

g
=ε̇

∼

g
− D ε̇g

eq(β
∼

g
− δε

∼

g )

Identification procedure, inverse approach from finite element [Pilvin
97]: the coefficient C , D, δ, are not exactly material coefficients,
but scale transition parameters, which should be fitted from Finite
Element computation on realistic polycrystalline aggregates.
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Calibration of the scale transition rule
FE computation

Global response
σ
∼

ε
∼

Local response

σ
∼

g

ε
∼

g

1 Perform a FE computation
of a realistic aggregate

2 Post-treatment to get the
macroscopic stress and
strain

3 Post-treament to get the
average values in each
phase

4 Identification of the
parameters of the transition
rule to have a good fit for
both global and local levels
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Summary of the scale transition rules
Taylor

gr
pl plε  =  ε 

εpl

σ

average grain1

grain 2

Kroener
σgrain = σ − C( ε  −  ε  )pl pl

gr

εpl

σ

grain1

average

grain 2−C

beta

δβ =δε  −    β δε   gr gr

pl pl
D

sum fgr grβ=       (     β  )

grain = σ − C( β  −  β  )σ gr
plpl

εpl

σ

average

ε
pl

β

grain1

grain 2

grain1
grain 2
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Distorsion of a yield surface

Fatigue tests on a 2024 aluminium alloy

PhD Marc Rousset, 1985
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Experimental distorsion of a yield surface (1)

First cycle

PhD Marc Rousset, 1985
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Experimental distorsion of a yield surface (1bis)

Second cycle

PhD Marc Rousset, 1985

20 / 39



Simulation of the distorsion of a yield surface

First cycle and second cycles, 2024 luminium alloy

[Cailletaud, 1992]
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Experimental distorsion of a yield surface (2)

Square path in the
ε11–ε12 plane

Yield surface
investigation for
each corner, at 1st
and 2nd cycle

Low viscous effect

Good prediction of
the stress response
in the σ11–σ12 plane

PhD Marc Rousset, 1985
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Simulation of the distorsion of a yield surface

[Cailletaud, 1992]
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Simulation of the memory effect
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[Besson et al., 2001]
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Simulation of the additional hardening obtained in
out-of-phase tension-shear loading

The loading is a circle in ε11–ε12 plane
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Response in the stress plane Evolution of the equivalent
stress

[Besson et al., 2001]
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Contour of accumulated slip after a tension test

0 0.00125 0.0025 0.00375 0.005

gvcum    min:0.0000 max:0.0086

FCC grains, 12
slip systems are re-
ported in each big
triangles
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Active slip systems in tension

Average value per grain: 2.17

Active systems in white
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Active slip systems for an out-of-phase test

Average value per grain: 3.25
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A 3D specimen (exp. made at LMT Cachan)

A polycrystal models in each Gauss point

Schematic view The mesh with
of the specimen subdomains for parallel computation

(more in [Feyel et al., 1997])
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A 3D specimen: computation results

A polycrystal models in each Gauss point

Hysteresis loop Loading path in
for 11 component the σ11 – σ22 plane
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Indentation, one polycristal for each Gauss point

(more in [Miehe et al., 1999])
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Deep drawing, one polycristal for each Gauss point

(more in [Raabe and Roters, 2004])
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linéaires et problèmes ouverts.
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