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Various scales in heterogeneous material modeling

(a) Microstructure calculation: take into account local phases and local
equilibrium (This lecture )

(b) Uniform field models: take into account local phases only

(c) Macroscopic models: do not account for local phases nor local
equilibrium
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Computations at various scales

Black box Realistic aggregate Intermediate level
Averaging
process
(2) phase by phase
(2’) grain by grain

Level (1) Level (3) Level (2) or (2’)
Macroscopic models Local information Local average
Average stress and Respect local Respect local

strain tensor Constitutive Equations Constitutive Equations
Equilibrium no neighbooring effect
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Various types of FE computations using crystal plasticity

Single Crystal models in each Gauss point

Multicrystals Cubic meshes Polycrystal aggregates

Real specimens Cubes Realistic microstructures

with a few grains 1 grain/elt Many Gauss Pt/grain
to check local fields Numerical Homogenization
With experiments Homogenization AND Relocalization
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Multicrystals, real microstructures

[Delaire et al., 2000] [Raabe et al., 1981]

[Eberl et al., 1998] Next lecture
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State-of-the-art on real microstructures

Good agreement, specially for large grains

Problems near grain boundaries

Behavior of a grain in its environment 6= single crystal behavior

Primary–secondary slip

Problem surface–volume (2D–3D meshes ?)

Example of a OFHC copper specimen, coming soon...
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Cubic meshes, cube elements

2D 3D
[Kalidindi et al., 1992] [Miehe et al., 1999]

Meshes used for homogenization purpose
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Polycrystalline aggregates (2)

[Bugat et al., 1999] [Mika and Dawson, 1999]
Looking for level (2) info Looking for level (3) info

9 / 40

Polycrystal aggregates

Work by Barbe (2000), Diard (2002), Musienko (2005)

28×28×28 mesh Local field of total axial strain
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Polycrystal aggregates

28×28×28 mesh Local field of von Mises stress
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Influence of GB’s

Global and local
Taylor factor

Illustration of the perturbation
due to grain boundary
by the variation of the
local Taylor factor

(more in [Raabe et al., 1981])
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A need for Grain Boundaries

[Evers et al., 2002] [Staroselski and Anand, 2003]

[Cailletaud et al., 2002] [Kim et al., 2002]
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Slip and twinning in Magnesium

(more in [Staroselski and Anand, 2003])

Compression on AZ31
works only with GB model

Hauser (1955)

Slip system contribution
+ von Mises for GB’s

L
∼

p = (1−ξ)
∑

s
γ̇ssign(τ s)S

∼

s

0 +ξM
∼

14 / 40

State-of-the-art on cubic meshes and RVEs

Periodic cells – Polycrystal RVE

Generally rather good for texture prediction, not so far from Taylor
(too stiff)

Representative provided 200–300 grains are used

Validity of the local information on approximative geometries ?

Realistic morphologies are necessary to capture local stress and
strain fields
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Construction of Voronöı polyhedra

Distance function Distance function Final result after
of a single point of a set of construction and

source point sources labelling
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Example of a three phase material with 16000 grains

Cubic domain of 2503 voxels 3D view
Extraction of phase 1
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Typical realization and the associated meshes

Multiphase element Real 3D mesh respecting
technique grain boundaries
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Tests on various FE configurations

Effect of the orientation distribution

Number of grains

Number of Euler angle sets

→ 200 grains or more, randomly distributed

Effect of the FE interpolation

→ quadratic interpolation, full integration

Effect of mesh size

→ 16 for macro, much more for local. . .

Tests made in tension, with ε
∼

= Diag (ε,−0.5ε,−0.5ε)
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Effect of the FE interpolation

Comparison between two strategies with 157464 integration points

183 = 5832 quadratic elts 273 = 19683 linear elts

Contour of accumulated slip after 0.015 extension
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Effect of the mesh size

Global response
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Effect of the mesh size on local stress field

16 × 16 × 16 elts 24 × 24 × 24 elts

180.0
222.3 258.5

300.8
343.1

385.4
427.7

470.0

axial stress (MPa);  E = 0.2 % 

Quadratic mesh, axial tension 0.2%, 200 grains
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Effect of the mesh size on accumulated plastic strain

16 × 16 × 16 elts 24 × 24 × 24 elts

0. 0.0004 0.0008 0.0013 0.0017 0.0021 0.0025 0.003 0.0034

equivalent cumulated plastic strain  ; E = 0.2 % 

Quadratic mesh, axial tension 0.2%, 200 grains
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Effect of the mesh size: geometry

32 × 32 × 32 elts 18 × 18 × 18 elts

Quadratic mesh, axial tension, 200 grains
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Effect of the mesh size on accumulated plastic strain

Geometry

range: 0.003 – 0.089

32 × 32 × 32 elts

Quadratic mesh, axial tension 0.2%, 200 grains
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The problem of the boundary conditions

From homogenization theory:

The macroscopic response of a RVE should be independent of

boundary conditions

Four boundary conditions have been used

HSB Homogeneous Strain at the Boundary: full constraint

MB Mixed Boundary condition: flat lateral faces

1FF 1 Free Face

4FF 4 Free Faces

Tests made in pure tension, trying to keep a zero lateral force
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Effect of the boundary conditions

Low on the macroscopic response (level 1)

Self–consistent model in good agreement with FE

Significant on the mean value in the grain (level 2)

More scatter in FE than in self–consistent approach

More scatter in terms of stress for HSB

More scatter in terms of strain for 4FF

Very high on intragranular fields (level 3)

Stress and strain gradients inside the grains
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Macroscopic responses: axial stress–strain curves
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Homogeneous strain BC present the best agreement with BZ model 28 / 40



Grain responses: axial stress–strain curves
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Grain responses: axial stress–strain curves
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Local response of the biggest grain
Homogeneous strain
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Axial stress-strain curve Lateral versus axial stress
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Local response of the strongest grain
Homogeneous strain
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Scatter due to grain boundary (GB)
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A result on all the Gauss points in the cube

Two populations ?
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Perspectives

Provide information for the higher level

Take information from lower level

Use finer and finer meshes (parallel computing)

Change the crystalllographic model (HCP, next lecture )

Introduce damage (intergranular damage and cleavage, next lecture )

Use in stress/strain fields presenting strong gradients, for instance
with Cosserat type models, not shown here (see for
instance [Forest et al., 2000] )

more in [Barbe et al., 2001a, Barbe et al., 2001b, Barbe et al., 2003]
[Cordier et al., 2005]
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Parallel computations

ZéBuLoN FE code

Z-mat material library

Computations on a linux
PC cluster

FETI method for parallel
computation (with
Onera/Feyel)

August 2006: 160 64-bit
processors
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