Contents

Copper specimen

Experiments and observation Morphology and mesh generation Comparison between exp and sim responses Local analysis

Damage Opening and Sliding in GB's

Material identification GB mesh generation Model formulation Numerical results

Fretting

Experiment and material identification Simulation results

Also of interest...

Components with a microstructure Zinc coating

SEM images and measured strain fields

Initial view

After 10% average strain

 $\label{eq:Lateral} \begin{array}{l} \textit{Lateral strain ε_{22}}\\ \textit{Average strain 5\%} \end{array}$

A summary of the experimental data

Tension tests on a small flat specimen made of OFHC copper

Data available:

- Macro stress-strain curve
- SEM images
- OIM scans
- Local strain field

[Tatschl and Kolednik, 2003, Tatschl and Kolednik, 2004] Erich Schmid Institute of Material Science, Leoben, Austria

Simulations in Musienko's PhD

FE calculations of crystalline microstructures (ctd)

Georges Cailletaud

Centre des Matériaux Ecole des Mines de Paris/CNRS

3D, 31780 nodes

3D-fine, 130818 nodes

extended 2D, 14076 nodes

Purpose of the computation

- Check the local strain fields
- Compare 2D and 3D FE computations
- Schmidegg's master thesis

• After the test, 6 layers of material were successively

• Final depth – 100 μm

reconstructed

OIM-analysis was made after each removal
3D grain structure can be

removed

FE result: sum of the plastic slips

3D grain morphology information

FE result: von Mises stress

Comparison of sim and exp axial strain fields

Experiment

0

9 / 52

0.12

Looking for primary slip ($\varepsilon = 0.05$)

Primary slip

Maximum slip

- Primary slip is predominant in large grains, far from the limit of the aggregate
- Special effect of twins ?

Resolved shear stress

 $\tau^{\rm B4},$ resolved shear stress on syst B4

Ratio au^{max}/ au^{B4}

B4 is such as it has the highest Schmid factor as a single crystal
 τ^{max}/τ^{B4} is greater than 1 in perturbated zones

• Localization of the deformation process on a small number of slip systems

Damage mechanisms

- Intergranular failure of grain boundaries normal to tension axis
- Iodin interaction with grain boundaries (adsorption)
- Grain boundaries become prone to damage due to iodin action
- Iodin diffusion faster in damaged grain boundaries
- After interganular propagation along a few grains, cleavage along basal plan appears

Cladding failure type

- Intergranular nucleation and propagation
- Inter to trans transition, with quasi-cleavage mechanisms and fluting
- Brittle surface of failure

13 / 52

• Presence of Stress Corrosion Cracking

Results on a 28x28x28 mesh

von Mises equivalent

20 / 52

Crystallographic data

- Hexagonal lattice until 863° C
- Deformation by slip on prismatic, then basal and pyramidal families

System	Plane	Direction
Prismatic	$\{10\overline{1}0\}$	$< 11\overline{2}0 >$
Basal	{0001}	$< 11\overline{2}0 >$
$\pi 1 < a >$	$\{10\overline{1}1\}$	$< 11\overline{2}0 >$
$\pi 1 < c + a >$	$\{10\overline{1}1\}$	<1123>
$\pi 2 < c + a >$	$\{11\overline{2}2\}$	< 1123 >

Simulation of hardening and creep tests

Aggregate fabrication scheme

Voronoi cells

polycrystalline aggre- grain gate added

- 2D and 3D cases are treated
- Polycrystalline aggregate generation then grain boundaries added
- Grain boundary is made of 2 elements. We no longer consider "grain boundary modeling", but "behaviour of each grain near the grain boundary"

Slip system families

• Plastic strain is a sum of elementary slips

$$\dot{\varepsilon}^{p} = \sum_{s} \mathbf{m}^{s} \dot{\gamma}^{s} \qquad \dot{\gamma}^{s} = \left\langle \frac{|\tau^{s}| - r^{s}}{K} \right\rangle^{n} \operatorname{sign}(\tau^{s})$$

- Predominant prismatic slip, possible basal and pyramidal slip
- Alternative solution cleavage at basal plane

22 / 52

boundaries

Local intragranular strain-stress state

Local state in each grain after a tension at 1.5%

- The larger meshes are "softer", they allow the material to deform more easily
- Coarse meshes underestimate the local scatter

3D - a 100 grain aggregate

- 2 element boundaries, hexahedra, prisms, tetrahedra, quadratic and quadratic/linear elements
- Local orientation to determine normal to the grain boundary

What is a grain boundary material ?

Grain boundary is the result of the behaviour of

- the normal material
- plus additional "slip" capabilities (opening and sliding)
- Two half-GB's having each the properties of the host grain

- Opening δ for positive $(\sigma_c R_c)$, with $\sigma_c = \sigma : (\underline{\mathbf{n}} \otimes \underline{\mathbf{n}})$
- Nothing happens if $(\sigma_c R_c) < 0$
- $R_c = R_c^0 + Q_c \cdot (1 exp(-b_c \delta_c))$, with $Q_c < 0$

Illustration of grain boundary behavior

Opening for a loading normal to GB plane and constant superimposed shear ($\beta = 0.1$)

DOS model

• Elasticity and plastic flow

Strain decomposition:
$$\dot{\epsilon} = \dot{\epsilon}^e + \dot{\epsilon}^p$$
Elastic law with isotropic damage: $\sigma = (1 - D) \mathbf{L} : \epsilon^e$ Opening and sliding: $\dot{\epsilon}^p = \dot{\delta} \mathbf{n} \otimes \mathbf{n} + \dot{\gamma} \{\mathbf{n} \otimes \mathbf{t}\}$

• Flow rules for opening and sliding

$$\begin{array}{ll} \textit{Opening:} & \dot{\delta} = \left\langle \frac{<\sigma_{11} > /(1-D) - R_n}{K_n} \right\rangle^{n_n} \\ \textit{Sliding:} & \dot{\gamma} = \left\langle \frac{|\tau|/(1-D) - R_t}{K_t} \right\rangle^{n_t} \textit{sign}(\tau) \end{array}$$

• Damage evolution

$$\begin{array}{ll} \textit{Critical variable:} & \sigma_D = \sqrt{\sigma^2 + \beta \tau^2} \\ \textit{Damage evolution:} & \dot{D} = \left\langle \frac{\sigma_D - R_D}{A} \right\rangle^r (1 - D)^{-k} \end{array}$$

Damage is coupled with elasticity, opening and sliding

26 / 52

Weak coupling procedure in the FE code

- M and D are resp. the sets of mechanical and diffusion variables
- mat_param_M and mat_param_D the sets of material parameters
- Diffusion variables are seen as external variables for mechanics
- Mechanical variables are seen as external variables for diffusion

mises stress

damage

Zircaloy. Boundary conditions

All computations. Macro level

32 / 52

Disconnected inter and transgranular failure

- Crack initiation at the surface
- Cleavage far from the crack tip

Conclusions and perspectives

- Crystal plasticity is the proper scale for modeling damage behaviour of Zy4
- Grain boundaries are critical, due to mechanics-environment interaction
- Intergranular crack propagation was simulated in 2D and 3D using a new concept of grain boundary (grain boundary as a bicrystal with Damage, Opening and Sliding).
- It was possible to reproduce the transition form intergranular to transgranular failure.
- more in [Cailletaud et al., 2002]

3D iodine-influenced intergranular fracture (DOS + iodine)

0

damage

Inter-transgranular passage

36 / 52

Microstructural model of TA6V

Model: equiaxed α titanium

Crystal plasticity: model identification

Representative elementary volume

- Grain geometry by random Voronoï polyhedra generation
- Boundary conditions: periodicity

Texture generation

- **()** A texture component = vector + tolerance of 20 degrees
- **2** Intensity in Multiple Random Units (MRU)
- Orientation generation by random process

00.2 pole figure

3D FE model of a fretting wear test (PhD T. Dick/Snecma)

Crystal plasticity: identification strategy

- \bigcirc α phase slip families: prism. , basal , pyramidal < a + c >(Fundenberger et al.)
- 2 slip repartition: 50% prismatic, 30% basal slip, 20% pyramidal < a + c > (Fundenberger et al.)
- **1** texture in Ta6V disk: c-directions parallel to disk-axis (Thesis Le Biavant-Guerrier)
- **Q** R₀ and R₁ cyclic fatigue tests (Thesis Le Biavant-Guerrier)

Crystal plasticity: model parameters

Model Parameters		prismatic	basal	pyramidal a+c
Viscosity	K	20	20	20
	n	7.41	7.41	7.41
Isotropic hard.	R0	280	300	540
	Q	-49.4	-52	-83.2
	Ь	2	2	2
Kinematic hard.	С	30000	30000	30000
	D	300	300	300

Mean stress relaxation in R_0 tests

C evolution in a tensile test

Computation Results: contact pressure

Equivalent plastic strain after 20 fretting cycles

improved J2 plasticity $\varepsilon_{eq}^{in}(max) = 0.34\%$

A millimetric sized component made of copper

Post.doc El Houdaigui, 2004

Conclusions and Outlook

- Life is heterogeneous... soft and hard areas
- Crystal plasticity is now manageable, even in large meshes
 - it gives a good idea of the local stress and strain gradients related to microstructure
 - *it is time to move from the* homogenization *to the* relocalization *process needed for damage modeling*
- Future crystal plasticity computations:
 - higher spatial resolution
 - more loading cycles \rightarrow steady state
 - micro scale damage measures

46 / 52

Mechanical behaviour of a zinc coating on a galvanized steel sheet

- Coating thickness 10 μm
- Orientation obtained by EBSD
- Biaxial stress state in the
- Critical resolved shear stresses identified from a bulk specimen
- Plastic strain is mainly due to basal slip
- Presence of twinning $\{10\overline{1}2\}\langle 10\overline{1}\,\overline{1}\rangle$

PhD R. Parisot

50 / 52

Von Mises stress for two realizations

Post.doc El Houdaigui, 2004

- Cailletaud, G., Diard, O., and Musienko, A. (2002).
 Damage, opening and sliding of grain boundaries.
 In et al., S. A., editor, Multiscale Modelling of Engng. Materials, Marrakech, Oct. 2002, pages 149–156. Kluüwer.
- Parisot, R., Forest, S., Gourgues, A.-F., Pineau, A., and Mareuse, D. (2000).
 Modeling the mechanical behavior of a multicrystalline zinc coating on a hot-dip galvanized steel sheet.

Computational Materials Science, 19:189-204.

Tatschl, A. and Kolednik, . (2003). A new tool for the experimental characterization of micro-plasticity.

Material Science and Engineering, A339:265–280.

Tatschl, A. and Kolednik, . (2004).
 On the experimental characterization of crystal plasticity in polycrystals.
 Material Science and Engineering, A364:384–399.

Distribution of slip and twinning in the specimen

