In situ three dimensional monitoring and modelling of small corner cracks in airframe Al alloys

H. Proudhon¹, A. Moffat², J.-Y. Buffière³, I. Sinclair²

¹MINES ParisTech, Centre des matériaux, France

²School of Engineering Sciences, University of Southampton, UK

³Matriaux, Ingnierie et Science group, INSA-Lyon, France

July 15th, 2009

Outline

1 introduction

2 Experimental

- X-ray tomography experiments
- Data analysis

3 Crack closure model

- Short presentation of the model
- Model predictions

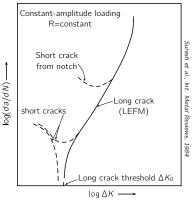
4 Summary

Outline

1 introduction

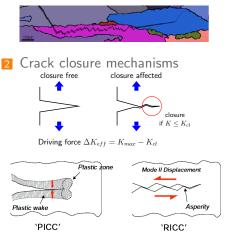
2 Experimental

- X-ray tomography experiments
- Data analysis


3 Crack closure mode

- Short presentation of the model
 Model presentations
- Model predictions

4 Summary



Short cracks and closure issues

3D crack propagation effects require 3D characterization...

1 Crystallographic propagation

Project aims

Experimental

Tomographic imaging for detailed insight of small crack evolutions (up to ${\sim}2~\text{mm})$

- Model alloy with ideally flat shape cracks
- Engineering 2027 alloy with highly complex crack shapes

Propagation model

Apply multi-mechanistic crack closure modelling to small corner cracks

- RICC and PICC
- Constant amplitude, constant ΔK and overload regimes
- Plane stress, plane strain and mixed stress state effects

Outline

1 introduction

2 Experimental

- X-ray tomography experiments
- Data analysis

3 Crack closure mode

- Short presentation of the model
- Model predictions

4 Summary

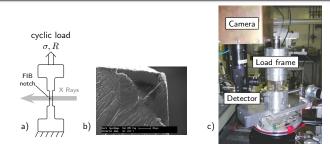
Outline

1 introduction

2 Experimental

- X-ray tomography experiments
- Data analysis

3 Crack closure mode


- Short presentation of the model
- Model predictions

4 Summary

introduction Experimental Crack closure model Summary

in situ X-ray tomography setup

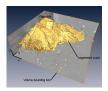
in situ crack monitoring

- Two \neq alloys: 5091 (grain size \sim 1 $\mu m) vs.$ 2027 (grain size \sim 100 $\mu m)$
- crack initiation is controlled via a FIB notch
- *in situ* fatigue device
- = study both baseline growth ($\Delta K \sim 3~{\rm MPa}\sqrt{\rm m})$ and post-overload growth

Outline

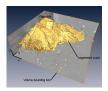
1 introduction

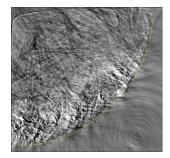
2 Experimental

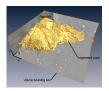

- X-ray tomography experiments
- Data analysis

3 Crack closure mode

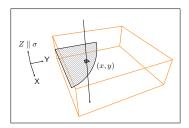
- Short presentation of the model
 Model presentations
- Model predictions

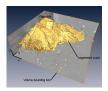

4 Summary


Amount of data is considerable (more than 100 scans) \rightarrow need automated data treatment *as much as possible*...


- crack front location and local da/dN values
- local crack opening values
- 3D rendering of crack morphology

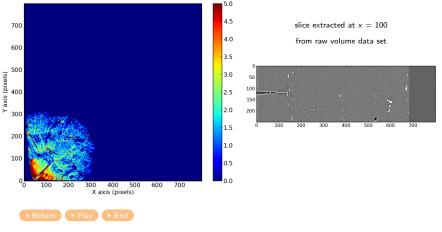
Amount of data is considerable (more than 100 scans) \rightarrow need automated data treatment *as much as possible*...


- crack front location and local da/dN values
- local crack opening values
- 3D rendering of crack morphology

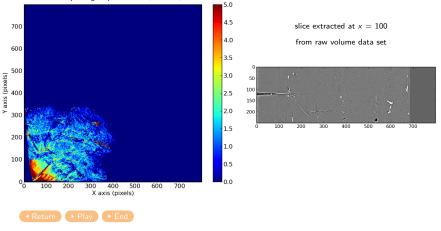


Amount of data is considerable (more than 100 scans) \rightarrow need automated data treatment *as much as possible*...

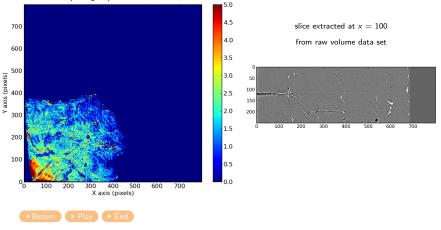

- crack front location and local da/dN values
- local crack opening values
- 3D rendering of crack morphology


Amount of data is considerable (more than 100 scans) \rightarrow need automated data treatment *as much as possible*...

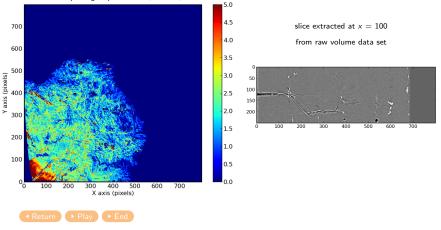
- crack front location and local da/dN values
- local crack opening values
- 3D rendering of crack morphology


N=208k cycles

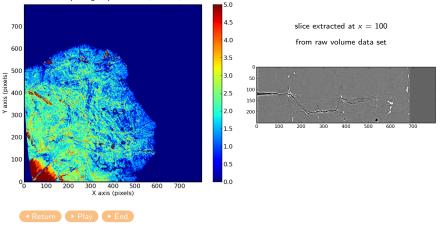
crack opening displacement (microns)


N=598k cycles

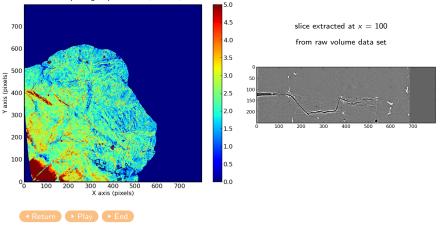
crack opening displacement (microns)


N=758k cycles

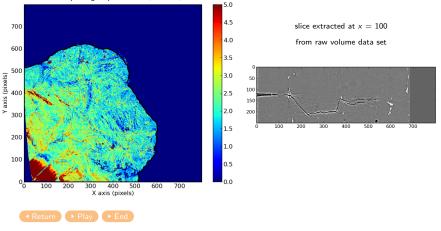
crack opening displacement (microns)


N=838k cycles

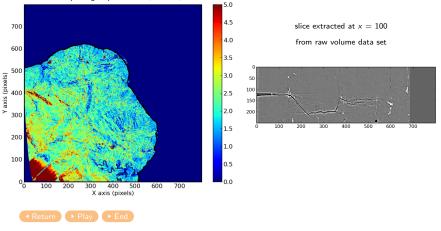
crack opening displacement (microns)


N=853k cycles

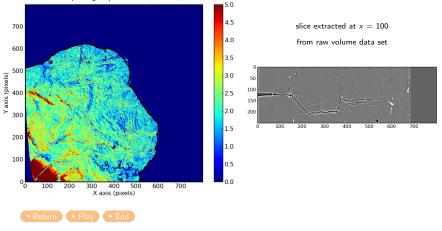
crack opening displacement (microns)


N=853k cycles + 100% OL

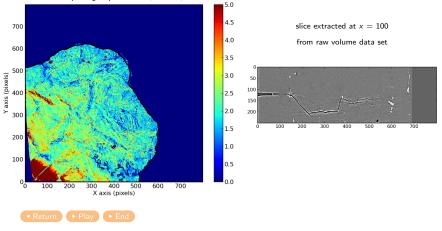
crack opening displacement (microns)


N=853k cycles + 100% OL + 1k cycles

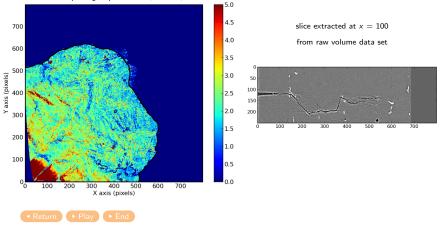
crack opening displacement (microns)


N=853k cycles + 100% OL + 2k cycles

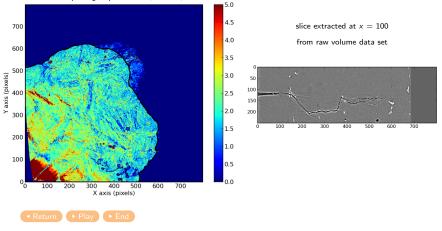
crack opening displacement (microns)


N=853k cycles + 100% OL + 3k cycles

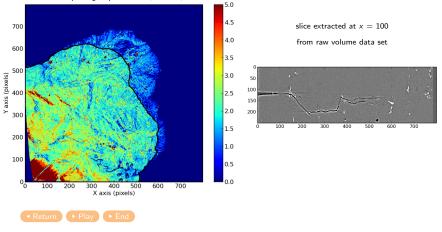
crack opening displacement (microns)


N=853k cycles + 100% OL + 6k cycles

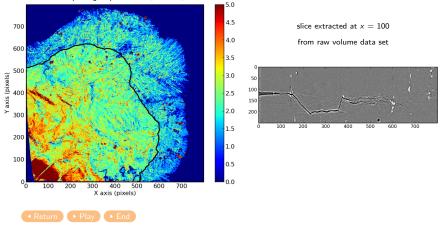
crack opening displacement (microns)


N=853k cycles + 100% OL + 14k cycles

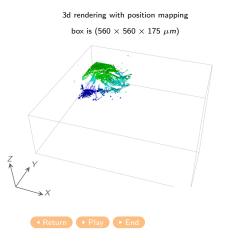
crack opening displacement (microns)


N=853k cycles + 100% OL + 24k cycles

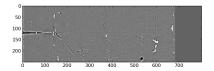
crack opening displacement (microns)

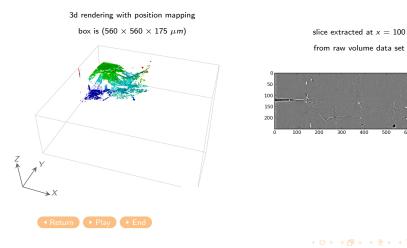

N=853k cycles + 100% OL + 39k cycles

crack opening displacement (microns)

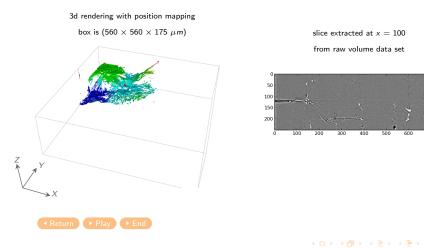


N=853k cycles + 100% OL + 59k cycles


crack opening displacement (microns)

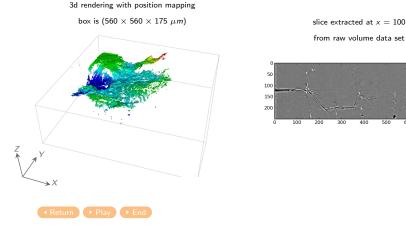

N=208k cycles

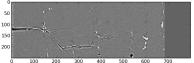
slice extracted at x = 100


N = 598k cycles

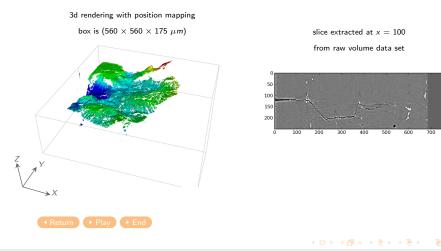
ICF12, Ottawa — 3D monitoring and modelling of small corner cracks in Al alloys

700


N=758k cycles

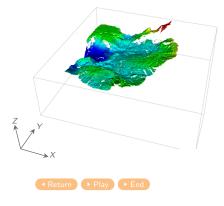

ICF12, Ottawa — 3D monitoring and modelling of small corner cracks in Al alloys

700

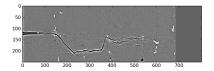

N=838k cycles

ICF12, Ottawa - 3D monitoring and modelling of small corner cracks in Al alloys

N=853k cycles

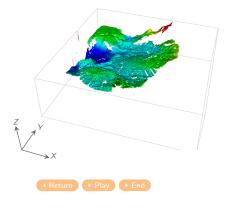

introduction Experimental Crack closure model Summary

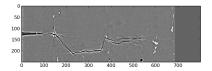
3D crack rendering in 2027


N=853k cycles + 100% OL

3d rendering with position mapping

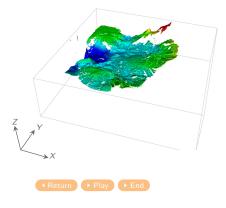
box is $(560 \times 560 \times 175 \ \mu m)$

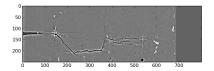

slice extracted at x = 100


N=853k cycles + 100% OL + 1k cycles

3d rendering with position mapping

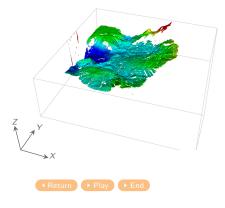
box is (560 \times 560 \times 175 μ m)

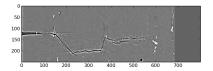

slice extracted at x = 100



3d rendering with position mapping

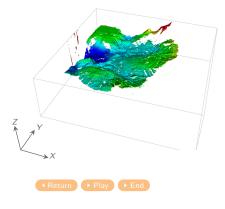
box is $(560 \times 560 \times 175 \ \mu m)$

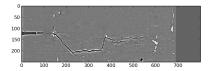

slice extracted at x = 100



3d rendering with position mapping

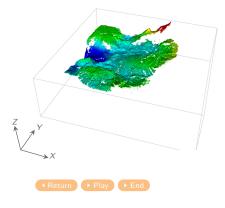
box is $(560 \times 560 \times 175 \ \mu m)$

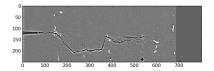

slice extracted at x = 100



3d rendering with position mapping

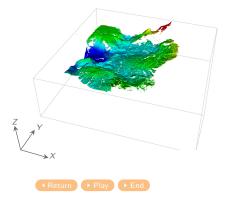
box is $(560 \times 560 \times 175 \ \mu m)$

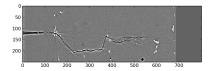

slice extracted at x = 100


N=853k cycles + 100% OL + 14k cycles

3d rendering with position mapping

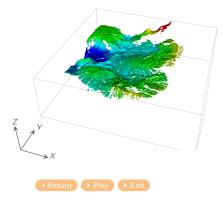
box is (560 \times 560 \times 175 μ m)

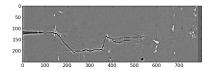

slice extracted at x = 100


N=853k cycles + 100% OL + 24k cycles

3d rendering with position mapping

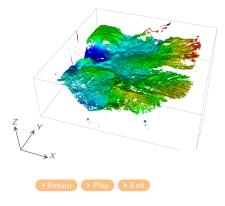
box is (560 \times 560 \times 175 μ m)

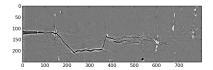

slice extracted at x = 100


N=853k cycles + 100% OL + 39k cycles

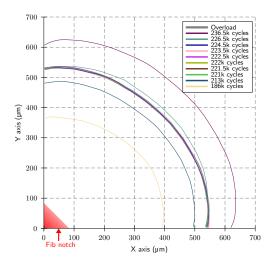
3d rendering with position mapping

box is (560 \times 560 \times 175 μ m)

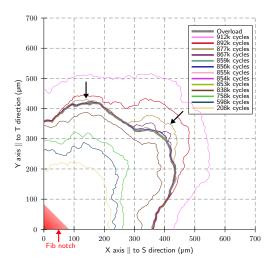

slice extracted at x = 100


N=853k cycles + 100% OL + 59k cycles

3d rendering with position mapping


box is (560 \times 560 \times 175 μ m)

slice extracted at x = 100


5091 vs. 2027 growth behavior

5091 crack growth

- Highly planar
- Microstructure independent
- Tunnelling 2-3%
- Overload stopped the crack, growth resumes from the bulk

5091 vs. 2027 growth behavior

2027 crack growth

- Tortuous crack path
- Strongly microstructure dependent
- Multiple crack branching
- Tunnelling more pronounced
- Overload stopped the crack longer than in 5091, growth resumes from the bulk also

Outline

1 introduction

2 Experimental

- X-ray tomography experiments
- Data analysis

3 Crack closure model

- Short presentation of the model
- Model predictions

4 Summary

Outline

1 introduction

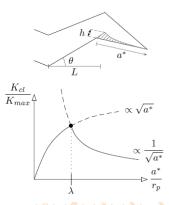
2 Experimental

- X-ray tomography experiments
- Data analysis

3 Crack closure model

- Short presentation of the model
 Model predictions
- Model predictions

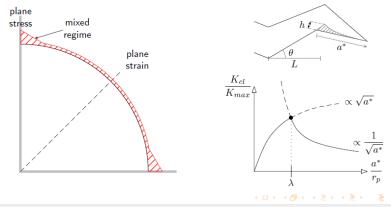
4 Summary


Model overview

Extended Southampton multi-mechanistic crack closure model

Apply to both CA growth and post-overload growth with mixed regime plane stress/plane strain description

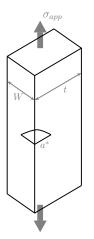
K_{cl} determination


- Plastically deformed material in the crack wake acts as a wedge
- *h* is directly related to crack opening at the point of overload
- When *h* is equal to crack opening, closure occurs
- RICC linked to CTSD, PICC linked to CTOD

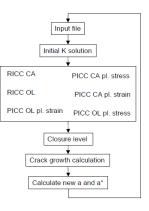
Model overview

Extended Southampton multi-mechanistic crack closure model

Apply to both CA growth and post-overload growth with mixed regime plane stress/plane strain description


Model equations

	Plane strain	Plane stress
PICC CA	$\frac{K_{cl}}{K_{max}} = R$	$\frac{K_{cl}}{K_{max}} = 0.47 + 0.53R^2$
PICC OL	$\frac{K_{cl}}{K_{max}} = \beta_I \frac{K_{max} \sqrt{\pi a}}{8\sigma_y (1 - \nu^2) \sqrt{l(2a - l)}} \frac{F}{V} \left(\xi^2 + 2R\xi - 2R - 1\right)$	<i>o</i> v (<i>i i</i>
RICC CA	$\frac{K_{cl}}{K_{max}} = \beta_{II} \frac{\sqrt{3\pi}K_{max} \left(\sin\frac{\theta}{2} + \sin\frac{3\theta}{2}\right)^2 \sin 2\theta}{32\sigma_y \sqrt{a^*} \left(3\cos\frac{\theta}{2} + \cos\frac{3\theta}{2}\right)} \left(\frac{1}{2} + R - \frac{1}{2}R^2\right)$	
RICC OL	$\frac{K_{cl}}{K_{max}} = \beta_{II} \frac{\sqrt{3\pi}K_{max} \left(\sin\frac{\theta}{2} + \sin\frac{3\pi}{2}\right)}{32\sigma_y \sqrt{a^*} \left(3\cos\frac{\theta}{2} + \cos\frac{\pi}{2}\right)}$	$\frac{\frac{\theta}{2}}{\cos\frac{3\theta}{2}} \frac{2^{2}\sin 2\theta}{\xi^{2}\left(\frac{1}{2}+R-\frac{1}{2}R^{2}\right)}$


Mixed state

Closure level is determined at each point of the crack front assuming competition between the two PICC/RICC models.

Model parameters and flowchart

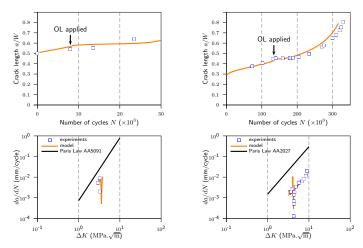
- Geometrical parameters *a**, *t*, *W*
- Materials properties
 E, ν, σ_y, *L*, θ
- Test parameters σ_{app}, *R*-ratio, %OL
- Crack growth parameters *C*, *m*
- Adjustable parameters
 λ, β_I, β_{II}

Outline

1 introduction

2 Experimental

- X-ray tomography experiments
- Data analysis


3 Crack closure model

- Short presentation of the mode
- Model predictions

4 Summary

Model predictions

The model is able to predict baseline growth and OL transient behavior for both materials within a factor of 2 in terms of number of cycles (equivalent crack length).

Outline

1 introduction

2 Experimental

- X-ray tomography experiments
- Data analysis

3 Crack closure mode

Short presentation of the modelModel predictions

4 Summary

Summary

Experimental

- An extensive set of 3D crack propagation data (two materials, baseline growth, \neq R ratios, OL) has been produced
- Crack growth in the 5091 alloy is mostly microstructure independent
- Crack growth in the 2027 alloy is very dependent on the microstructure and is expected to be predominantly controlled by RICC
- Overloads systematically stop the cracks. After some cycling, the crack growth resume from the bulk (in the middle for the 5091 and from a likely well oriented grain for the 2027)

Modelling

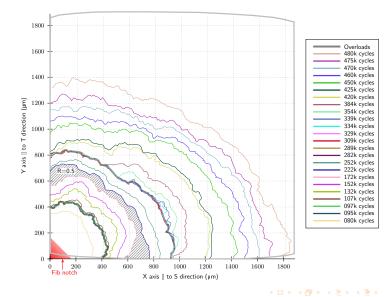
- Good baseline description for both materials
- 5091 growth is more PICC driven while 2027 is more RICC driven
- Southampton model seems reasonably extendable to small crack description
- Overload retardation can be predicted within a factor of 2 for all experiments with a single set of fitting parameters

Acknowledgements

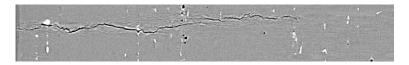
THANK YOU

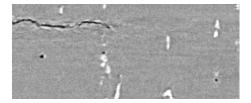
special thanks to:

- R. Collins and D. Dai from Airbus UK
- G. Johnson and E. Boller from ID19, ESRF
- Michail Vidiassov for his VTK to U3D exporter

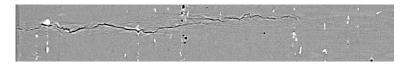


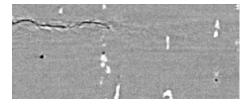
5 Additional slides

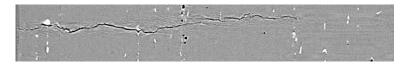


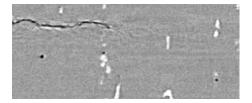

・ロト ・四ト ・ヨト ・ヨト

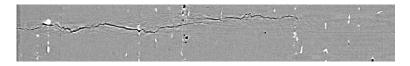
Crack fronts in 2×2 2027 sample

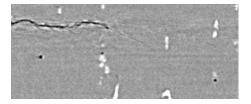


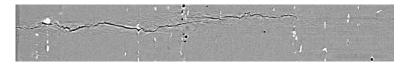

$$N = 289k$$

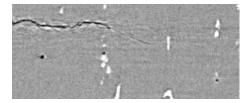

$$N = 309k$$



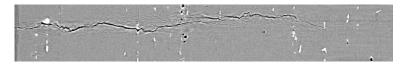

・ロン ・四 と ・ ヨ と ・ ヨ と

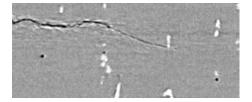

$$N = 329k$$


$$N = 334k$$

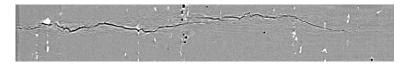


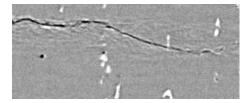
・ロン ・御 と ・ ヨン ・ ヨン

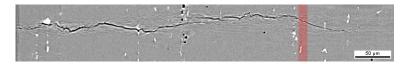

$$N = 339k$$

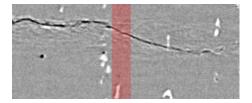


・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・


N = 354k




イロン イロン イヨン イヨン 一日


$$N = 384k$$

$$N = 384k$$

Model parameters

Material parameters			
.: 5091 :.	.: 2027 :.		
 L = 10 μm 	 L = 30 μm 		
$\bullet \ \theta = 36^{\circ}$	$\bullet \ \theta = 45^{\circ}$		
Paris law:	Paris law: <i>m</i> =		
$m = 3.04$ $C = 7.2 10^{-10}$	2.35 $C = 13.0 10^{-10}$		

Fitting parameters

.: 5091 :.	.: 2027 :.
 λ = 0.75/0.42 	 λ = 0.75/0.42
$\beta_I = 1.5/1.3$	$\beta_I = 1.5/1.3$
■ β _{II} = 2.0/2.0	$\beta_{II} = 2.0/3.0$