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Short cracks and closure issues
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3D crack propagation effects
require 3D characterization. . .

1 Crystallographic propagation

2 Crack closure mechanisms

closure

if K ≤ Kcl

closure free closure affected

Driving force ∆Keff = Kmax −Kcl
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Project aims

Experimental

Tomographic imaging for detailed insight of small crack evolutions
(up to ∼2 mm)

Model alloy with ideally flat shape cracks

Engineering 2027 alloy with highly complex crack shapes

Propagation model

Apply multi-mechanistic crack closure modelling to small corner
cracks

RICC and PICC

Constant amplitude, constant ∆K and overload regimes

Plane stress, plane strain and mixed stress state effects
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in situ X-ray tomography setup

a) b) c)

Camera

Load frame

Detector

X Rays

FIB

notch

cyclic load
σ, R

in situ crack monitoring

Two 6= alloys: 5091 (grain size ∼ 1 µm) vs. 2027 (grain size
∼ 100 µm)

crack initiation is controlled via a FIB notch

in situ fatigue device

study both baseline growth (∆K ∼ 3 MPa
√

m) and
post-overload growth
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Tomographic data analysis

Amount of data is considerable (more than 100
scans) → need automated data treatment as
much as possible. . .

For each tomographic image (x,y,z):

crack front location and local
da/dN values

local crack opening values

3D rendering of crack morphology
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Crack opening displacement in 2027

N=208k cycles

slice extracted at x = 100

from raw volume data set

Return Play End
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Crack opening displacement in 2027

N=598k cycles

slice extracted at x = 100

from raw volume data set
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Crack opening displacement in 2027

N=758k cycles

slice extracted at x = 100

from raw volume data set

Return Play End
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Crack opening displacement in 2027

N=838k cycles

slice extracted at x = 100
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Crack opening displacement in 2027

N=853k cycles + 100% OL

slice extracted at x = 100

from raw volume data set

Return Play End
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Crack opening displacement in 2027

N=853k cycles + 100% OL + 1k cycles

slice extracted at x = 100

from raw volume data set

Return Play End
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Crack opening displacement in 2027

N=853k cycles + 100% OL + 2k cycles

slice extracted at x = 100

from raw volume data set

Return Play End
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Crack opening displacement in 2027

N=853k cycles + 100% OL + 3k cycles

slice extracted at x = 100

from raw volume data set

Return Play End
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Crack opening displacement in 2027

N=853k cycles + 100% OL + 6k cycles

slice extracted at x = 100

from raw volume data set

Return Play End
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Crack opening displacement in 2027

N=853k cycles + 100% OL + 14k cycles

slice extracted at x = 100

from raw volume data set

Return Play End
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Crack opening displacement in 2027

N=853k cycles + 100% OL + 24k cycles

slice extracted at x = 100

from raw volume data set

Return Play End
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Crack opening displacement in 2027

N=853k cycles + 100% OL + 39k cycles

slice extracted at x = 100

from raw volume data set

Return Play End
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Crack opening displacement in 2027

N=853k cycles + 100% OL + 59k cycles

slice extracted at x = 100

from raw volume data set

Return Play End
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3D crack rendering in 2027

N=208k cycles

Z
Y

X

3d rendering with position mapping

box is (560× 560× 175 µm) slice extracted at x = 100

from raw volume data set

Return Play End
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3D crack rendering in 2027
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5091 vs. 2027 growth behavior
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5091 crack growth

Highly planar

Microstructure
independent

Tunnelling 2-3%

Overload stopped
the crack, growth
resumes from the
bulk
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5091 vs. 2027 growth behavior
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2027 crack growth

Tortuous crack path

Strongly
microstructure
dependent

Multiple crack
branching

Tunnelling more
pronounced

Overload stopped
the crack longer
than in 5091,
growth resumes
from the bulk also
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Model overview

Extended Southampton multi-mechanistic crack closure model

Apply to both CA growth and post-overload growth with mixed
regime plane stress/plane strain description

Kcl determination

Plastically deformed material in
the crack wake acts as a wedge

h is directly related to crack
opening at the point of overload

When h is equal to crack
opening, closure occurs

RICC linked to CTSD, PICC
linked to CTOD
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Model equations

Plane strain Plane stress
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Mixed state

Closure level is determined at each point of the crack front
assuming competition between the two PICC/RICC models.
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Model parameters and flowchart

σapp

W
t

a
∗

Geometrical parameters
a∗, t, W

Materials properties
E , ν, σy , L, θ

Test parameters
σapp, R-ratio, %OL

Crack growth parameters
C , m

Adjustable parameters
λ, βI , βII
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Model predictions
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The model is able to predict baseline growth and OL transient behavior for both

materials within a factor of 2 in terms of number of cycles (equivalent crack length).
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Summary

Experimental

An extensive set of 3D crack propagation data (two materials, baseline growth,
6= R ratios, OL) has been produced

Crack growth in the 5091 alloy is mostly microstructure independent

Crack growth in the 2027 alloy is very dependent on the microstructure and is
expected to be predominantly controlled by RICC

Overloads systematically stop the cracks. After some cycling, the crack growth
resume from the bulk (in the middle for the 5091 and from a likely well oriented
grain for the 2027)

Modelling

Good baseline description for both materials

5091 growth is more PICC driven while 2027 is more RICC driven

Southampton model seems reasonably extendable to small crack description

Overload retardation can be predicted within a factor of 2 for all experiments
with a single set of fitting parameters
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Crack fronts in 2× 2 2027 sample
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Overload details

N = 289k
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Overload details

N = 309k
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Overload details

N = 329k

ICF12, Ottawa — 3D monitoring and modelling of small corner cracks in Al alloys 26/27



Additional slides

Overload details

N = 334k
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Overload details

N = 339k
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Overload details

N = 354k

ICF12, Ottawa — 3D monitoring and modelling of small corner cracks in Al alloys 26/27



Additional slides

Overload details

N = 384k
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Overload details

N = 384k
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Model parameters

Material parameters

.: 5091 :.

L = 10 µm

θ = 36°

Paris law:
m = 3.04 C = 7.2 10−10

.: 2027 :.

L = 30 µm

θ = 45°

Paris law: m =
2.35 C = 13.0 10−10

Fitting parameters

.: 5091 :.

λ = 0.75/0.42

βI = 1.5/1.3

βII = 2.0/2.0

.: 2027 :.

λ = 0.75/0.42

βI = 1.5/1.3

βII = 2.0/3.0
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