## TD 29 : Sélection des matériaux par l'ingénieur

### Objectifs du TD:

- Familiarisation avec la démarche de sélection des matériaux dans la conception (cahier des charges, fonction d'objectif, contraintes de conception et sélection proprement dite).
- A cette occasion comparaison des propriétés des grandes familles de matériaux, et retour sur les phénomènes physiques conditionnant ces propriétés.

## Exercice. Matériaux pour rames d'aviron

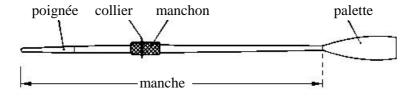



Figure 1 : Structure d'une rame d'aviron (source : d'après CES)

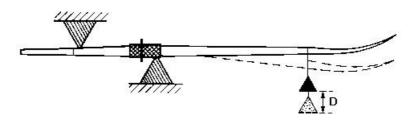



Figure 2 : Mesure de la rigidité d'une rame d'aviron (source : d'après CES)

### 1. Définition du concept

Quels moyens imaginez-vous pour la propulsion d'un bateau ? Sur quels principes mécaniques ces moyens reposent-ils ?

## 2. Analyse fonctionnelle de l'objet

On se focalise ici sur la propulsion par rames.

- Ouelle est la fonction de la rame ?
- Comment une rame est-elle sollicitée en service ? Quelles sont les conditions aux limites ?
- Quelles sont les sollicitations les plus critiques (« dimensionnantes ») à votre avis ?

### 3. Rédaction du cahier des charges

- Lister les différents attributs de la rame : comment est-elle caractérisée en termes de géométrie et de propriétés ?
- <u>Astreintes</u>: Quelles sont les propriétés qu'il faut « juste satisfaire » mais non « optimiser » ? Les astreintes liées à ces propriétés sont-elles fortes ou légères ?
- <u>Fonction d'objectif</u>: Quelle est la propriété « objectif » c'est-à-dire celle qui fait qu'un matériau sera meilleur qu'un autre pour cette application ?
- <u>Géométrie</u> : préciser la géométrie choisie. Quelles sont les variables fixées par le problème et les variables libres ?

## 4. Modélisation et calcul de l'indice de performance

- Exprimer la fonction d'objectif en fonction de la géométrie et des propriétés matériau. Une des variables n'est pas connue, laquelle ?
- En utilisant le cahier des charges et les formulaires ci-joints, trouver une équation permettant d'éliminer la variable inconnue dans la fonction objectif.
- En déduire la formulation de la fonction objectif en identifiant bien les contributions respectives de la géométrie, des spécifications fonctionnelles et des propriétés matériau.
- Quel est l'indice de performance (la part « matériau ») à maximiser pour trouver les meilleures solutions ?

#### Indications:

Calcul d'une *flèche*  $\delta$  sous un moment M fixé :  $\delta = \frac{M \cdot L^2}{C_1 \cdot E \cdot I}$ , où I est le moment d'inertie de la poutre et E est le module d'Young du matériau. La constante  $C_1$  (sans unité) est donnée dans le Tableau 1 et le moment

d'inertie est donné dans le Tableau 2. Les conditions d'essai de rigidité sont montrées sur la Figure 2.

On considère que la poutre est *défaillante* par *plasticité* lorsque la limite d'élasticité  $\sigma_y$  est localement atteinte. On écrit la valeur du moment critique :  $M_f = \frac{I}{\gamma_m} \cdot \sigma_y$ , où  $\gamma_m$  est la distance de la fibre neutre (en flexion) à la surface extérieure de la poutre (typiquement la moitié de l'épaisseur de la section).

Tableau 1 : formulaire utile de résistance des matériaux : rigidité en flexion

| Conditions aux limites                                                  | Valeur de C <sub>1</sub> |
|-------------------------------------------------------------------------|--------------------------|
| Poutre encastrée à une extrémité, chargée à l'autre                     | 1                        |
| Poutre encastrée à une extrémité, chargée uniformément dans la longueur | 8                        |
| Poutre fixée par deux rotules, appui central                            | 48                       |
| Poutre encastrée aux deux extrémités, appui central                     | 192                      |

Tableau 2 : formulaire utile de résistance des matériaux : moment d'inertie

| Géométrie de la section                      | I (en m <sup>4</sup> )  |
|----------------------------------------------|-------------------------|
| Disque plein, de rayon $r$                   | $\pi \cdot r^4$         |
|                                              | 4                       |
| Carré plein, de côté a                       | $a^4$                   |
|                                              | 12                      |
| Triangle équilatéral plein, de côté <i>a</i> | $a^4$                   |
|                                              | $\overline{32\sqrt{3}}$ |

#### 5. Sélection des matériaux

- Parmi les diagrammes fournis, quels sont ceux à utiliser pour la sélection des matériaux pour rame d'aviron ?
- Utiliser le « bon » diagramme pour trouver les « meilleures » solutions. Lister celles-ci.
- Certaines solutions doivent évidemment être rejetées. Pourquoi ?
- Donner la liste finale des familles de matériaux sélectionnées.

#### 6. Analyse critique des solutions retenues

Commenter la faisabilité des différentes solutions choisies et comparer avec ce qui existe sur le marché.

# Références et lectures complémentaires

M.F. Ashby, *Choix des matériaux en conception mécanique*, Dunod, Paris, 2000 (trad. S. Décarroux), 482 pages.

M.F. Ashby, Y. Bréchet, L. Salvo, *Sélection des matériaux et des procédés de mise en œuvre*, coll. Traité des matériaux, vol. 20, Presses polytechniques et universitaires romandes, 2001, 478 pages. *CES 4.0*, Granta Design Ltd, Cambridge, UK (en anglais, une licence disponible à l'Ecole)

# Petit glossaire

CFRP : Carbon fibre reinforced polymer = composite à matrice organique renforcé par des fibres de carbone

GFRC : idem, en remplaçant les fibres de carbone par des fibres de verre

KFRC : idem, en remplaçant les fibres de carbone par des fibres de Kevlar (aramide)

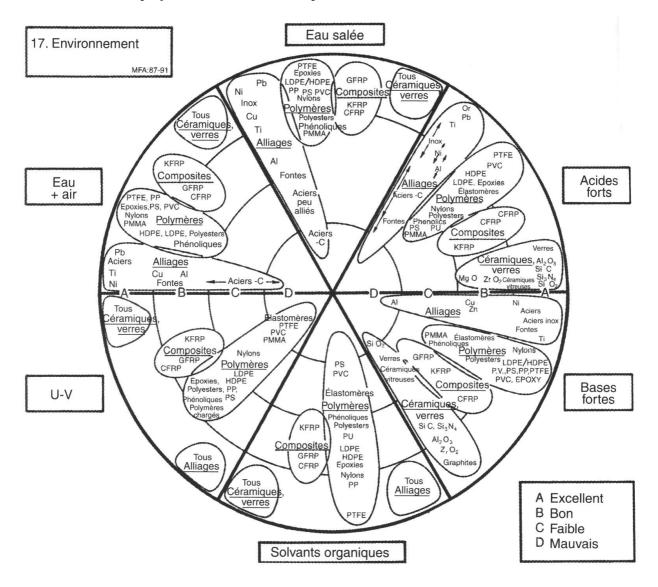



Diagramme de résistance à l'environnement et au rayonnement ultraviolet. Source : Ashby, Dunod, p. 74.

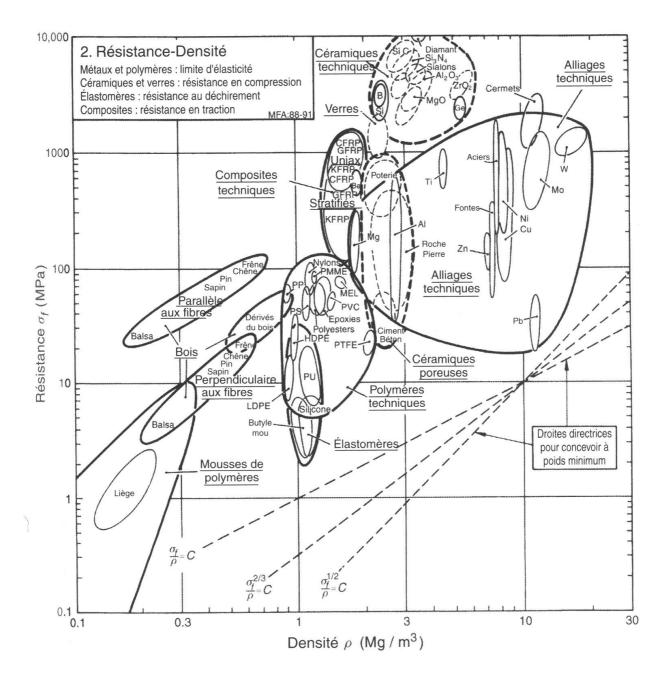



Diagramme résistance mécanique – densité. Source : Ashby, Dunod, p. 47.

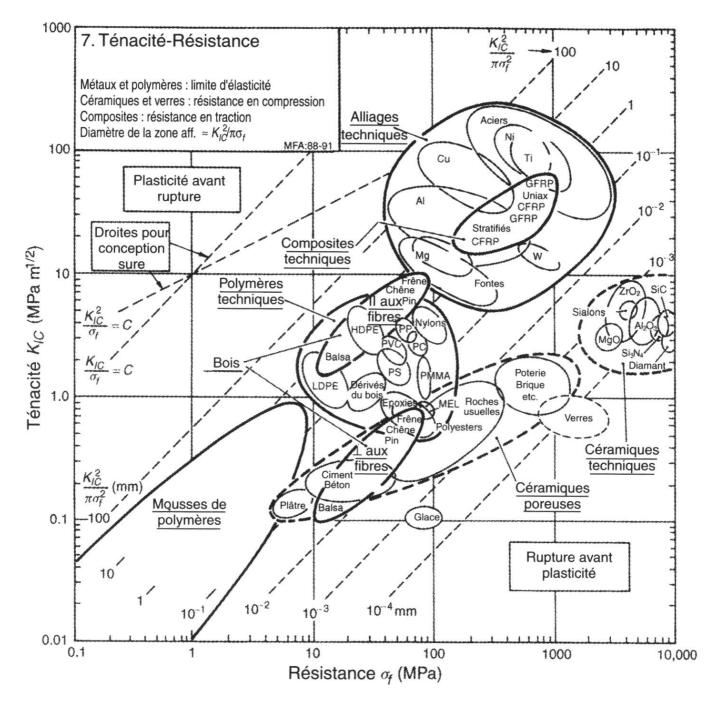



Diagramme ténacité – résistance. Source : Ashby, Dunod, p. 56.

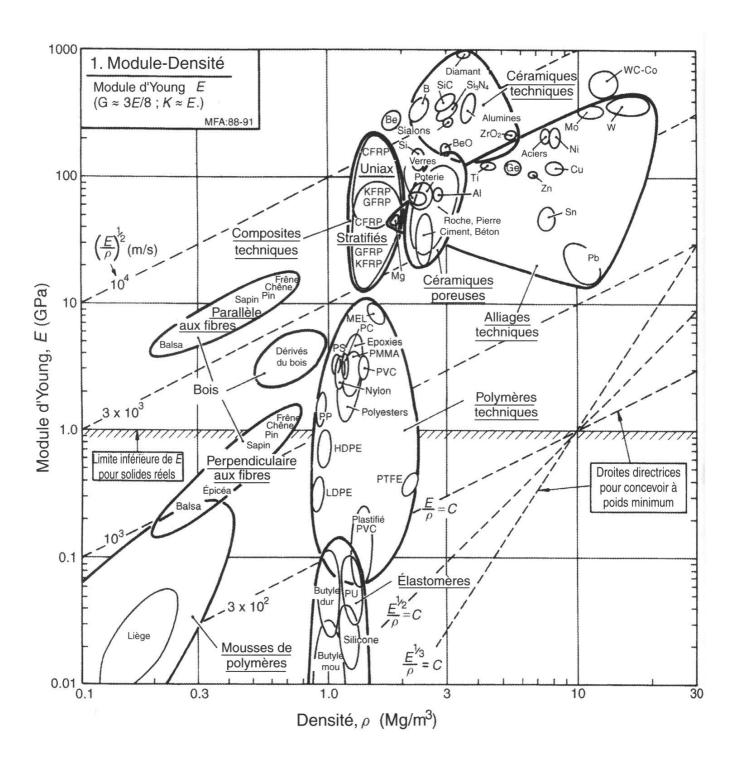



Diagramme module – densité. Source : Ashby, Dunod, p. 44.