
1 23

Archive of Applied Mechanics
 
ISSN 0939-1533
 
Arch Appl Mech
DOI 10.1007/s00419-014-0860-z

A fully coupled diffusional-mechanical
formulation: numerical implementation,
analytical validation, and effects of
plasticity on equilibrium

A. Villani, E. P. Busso, K. Ammar,
S. Forest & M. G. D. Geers



1 23

Your article is protected by copyright and

all rights are held exclusively by Springer-

Verlag Berlin Heidelberg. This e-offprint is

for personal use only and shall not be self-

archived in electronic repositories. If you wish

to self-archive your article, please use the

accepted manuscript version for posting on

your own website. You may further deposit

the accepted manuscript version in any

repository, provided it is only made publicly

available 12 months after official publication

or later and provided acknowledgement is

given to the original source of publication

and a link is inserted to the published article

on Springer's website. The link must be

accompanied by the following text: "The final

publication is available at link.springer.com”.



Arch Appl Mech
DOI 10.1007/s00419-014-0860-z

SPECIAL ISSUE

A. Villani · E. P. Busso · K. Ammar · S. Forest ·
M. G. D. Geers

A fully coupled diffusional-mechanical formulation:
numerical implementation, analytical validation,
and effects of plasticity on equilibrium

Received: 21 September 2013 / Accepted: 17 March 2014
© Springer-Verlag Berlin Heidelberg 2014

Abstract A macroscopic coupled stress-diffusion theory which accounts for the effects of nonlinear material
behaviour, based on the framework proposed by Cahn and Larché, is presented and implemented numerically
into the finite element method. The numerical implementation is validated against analytical solutions for
different boundary valued problems. Particular attention is payed to the open system elastic constants, i.e. those
derived at constant diffusion potential, since they enable, under circumstances, the equilibrium composition
field for any generic chemical-mechanical coupled problem to be obtained through the solution of an equivalent
elastic problem. Finally, the effects of plasticity on the overall equilibrium state of the coupled problem solution
are discussed.

Keywords Vacancy diffusion · Stress-assisted diffusion · Open system elastic constants

1 Introduction

Problems involving diffusion in a stressed material system can be found in numerous applications generally
concerned with high homologous temperatures, such as thin films in semiconductor devices and power plant
and aero-engine components. The transport of matter by diffusion under stress can generally result in the
gradual degradation of the material microstructure, leading to the nucleation of local damage (e.g. stable
vacancy clusters or micro-voids, micro-cracks). The presence of such local damage events could impede the
correct performance of the component or device and limit its targeted service life. It is thus critical to model
accurately the motion of diffusing species and point defects in complex material systems operating under
severe loading and environmental conditions.

Podstrigach and coworkers [17] were the first to develop a thermodynamic theory of stress-diffusion
coupling. It relies on the choice of a specific free energy function, and analytical solutions in the case of
elastic mechanical behaviour are provided for a loaded plate with a hole [18] and the bending of a plate
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[16]. Cahn and Larché [6] further developed this coupled stress-diffusion theory and introduced the concept
of open system elastic moduli. In their thermodynamic theory (see [7] for full details, and [3] for a broad
discussion), the convenient concept of network is introduced, whereby all atoms are assumed to be capable
of diffusing. In a crystal, for instance, the lattice itself can be assumed to act as the network and to remain
coherent. Equilibrium can then be attained by considering a constant and homogeneous diffusion potential.
Cahn and Larché introduced the concept of open system elastic constants, or elastic constants derived at
constant diffusion potential, in order to obtain a linearised version of the nonlinear coupled problem. Maugin
[13] also addressed extensively the thermodynamic problem of a diffusive variable, without stress coupling,
albeit considering the first gradient of the concentration as well.

Other approaches have been used to model specific problems involving the coupling between stress and
diffusion. For instance, the diffusion of vacancies within the heterogeneous stress field around an edge dislo-
cation core has been treated in [19] using Bessel functions. In contrast, boundary value problems involving
coupled diffusion-stress phenomena have been solved analytically using Cosserat spectrum theory in [15]. In
[24] and [25], finite element solutions involving stress-induced diffusion in a plate subject to different types
of boundary conditions were reported. In [22], the authors relied on Lambert functions to derive an analytical
solution of the chemical concentration in a loaded rod, and compared it to a coupled finite element formulation.
Finally, Anand [2] developed a thermodynamical theory which accounts for diffusion of hydrogen and heat
coupled with the mechanical problem.

The theory is implemented numerically using the finite element method and used to solve three elastic
and elasto-plastic stress-diffusion boundary value problems, out of which two were never addressed in the
literature before. The first one involves a coupled diffusion-stress formulation for a disc rotating at high speeds
and temperature, i.e. at conditions similar to those encountered in gas turbine engine components. The second
concerns the classical redistribution of vacancies around an edge dislocation, as described in [11], which can
be related to a recent paper by Cahn [5]. Finally, a problem relevant to vacancy diffusion-driven cavitation
in nuclear reactor components is studied, i.e. the redistribution of vacancies in a loaded perforated plate,
influenced by plasticity.

The objective of the present paper is to provide a validation of the fully coupled implementation against
the systematic analytical solution given by Cahn and Larché, complemented by the introduction of internal
variables necessary to address plasticity. The introduction of plasticity in the constitutive equations allows
for a direct extension of the general solution of Cahn and Larché, for a given plastic strain field. In addition,
the coupled elastoviscoplastic diffusion theory is formulated and implemented by means of the finite element
method in order to simulate true evolution problems.

Standard tensorial notation will be used throughout the paper. Unless otherwise specified, vectors will be
described by boldface lower case letters, second order tensors by boldface upper case letters, and fourth order
tensors by italic upper case letters. The formulation is limited to the small strain isothermal case for which
analytical solutions can be derived.

2 Continuum thermodynamic coupled diffusion-stress theory

2.1 Balance equations

The diffusing species are assumed to be solute atoms and vacancies. The vacancy concentration obeys the
mass balance equation, which relates the concentration, c, to the flux vector, j,

ċ = −div j on V

j = j · n on ∂V
(1)

where no source term is considered. The concentration is defined as the ratio between the lattice sites occupied
by solute atoms or vacancies and the total number of lattice sites in the material point of the crystalline solid.
The mechanical static equilibrium is defined by:

div σ + f = 0 on V

t = σ · n on ∂V
(2)

where σ is the stress tensor, f is the body force vector in V and t the traction vector acting on ∂V .
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2.2 Constitutive equations

2.2.1 General theory

The total strain is partitioned as:
ε = εe + εp + ε�(c) (3)

where εe is the elastic strain tensor, εp the plastic strain tensor, and ε� the eigenstrain tensor, representing the
volume change associated with the substitution of species in lattice sites. The latter typically depends on the
concentration, c, as

ε�(c) = (c − cref) H + ε�ref . (4)

Here, ε�re f is the eigenstrain tensor corresponding to the reference concentration, cref , and the tensor H = ∂ε

∂c
scales the concentration change. Recall the first law of thermodynamics:

∫

V

ėdV =
∫

V

σ : ε̇dV (5)

where, e, is the internal energy density per unit volume and σ the stress tensor. The second law states that:
∫

V

ṡdV −
∫

∂V

μj
T

· ndS ≥ 0 (6)

where, s, is the entropy density, T, the absolute temperature, and μ the diffusion potential.1 The local form of
the second law (6), for a constant and uniform temperature field, reads:

T ṡ − div (μj) ≥ 0 (7)

Recalling ψ = e − T s, the free energy density per unit volume at constant temperature, then Eq. (7) yields the
local form of the dissipation inequality:

D = σ : ε̇ − div (μj)− ψ̇ ≥ 0 (8)

The diffusion-stress coupling is introduced in the choice of the free energy volumetric density function. Here, it
is assumed to consist of a mechanical and a chemical part, which depend on several independent state variables,
i.e. the elastic strain tensor εe, an isotropic scalar hardening variable r , a traceless kinematic tensorial hardening
variable, α [12], and the vacancy concentration, c. Then,

ψ(εe, r,α, c) = ψmech (εe, r,α, c
)+ ψchem(c). (9)

The mechanical part of the free energy is defined as,

ψmech (εe, r,α, c
) = 1

2
εe : C(c) : εe + ψmech,p (r,α, c) , (10)

where C is elastic moduli fourth order tensor, and ψmech,p (r,α, c) corresponds to the energy stored by work-
hardening. The dissipation can then be expressed in terms of Eqs. (8), (1) and (9) as:

D =
(
σ − ∂ψ

∂εe

)
: ε̇e +

(
μ+ σ : H − ∂ψ

∂c

)
ċ − j · ∇μ + σ : ε̇p − ∂ψ

∂r
ṙ − ∂ψ

∂α
: α̇ ≥ 0 (11)

The condition (11) depends linearly on the independent variables ε̇e, ċ, and the terms in brackets are independent
of ε̇e and ċ. The state laws then follow for the stress and diffusion potential (using Coleman-Noll argument):

σ = ∂ψ

∂εe , (12)

1 In the sense of Cahn and Larché: μ = μs − μh, where μs is the chemical potential of the species under consideration, and
μh is the chemical potential of the host atoms.
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μ = ∂ψ

∂c
− σ : H, (13)

The following thermodynamic forces can be inferred from Eq. (11),

Rp = ∂ψ

∂r
, X = ∂ψ

∂α
(14)

The dissipation inequality then simplifies to:

−j · ∇μ+ σ : ε̇p − Rpṙ − X : α̇ ≥ 0 (15)

To ensure positiveness of the dissipation, the existence of a convex dissipation potential Ω(σ , Rp,X,∇μ), is
assumed so that :

ṙ = − ∂Ω

∂Rp
, α̇ = −∂Ω

∂X
, ε̇p = ∂Ω

∂σ
, j = − ∂Ω

∂∇μ (16)

In the case of rate-independent plasticity, which is of practical interest here for enabling analytical solutions,
two distinct potentials, Ωmech and Ωchem, are introduced such that

ṙ = −λ̇ ∂Ω
mech

∂Rp
, α̇ = −λ̇ ∂Ω

mech

∂X
, ε̇p = λ̇

∂Ωmech

∂σ
, j = −∂Ω

chem

∂∇μ (17)

where λ̇ is the plastic multiplier. A yield function, g(σ ,X, Rp), can be defined so that λ̇g = 0, λ̇ ≥ 0, g ≤ 0.
The consistency condition under plastic loading reads:

ġ = 0 = ∂g

∂σ
: σ̇ + ∂g

∂X
: Ẋ + ∂g

∂Rp
Ṙp, (18)

from which the plastic multiplier is obtained,

λ̇ =
∂g

∂σ
: ∂

2ψ

∂εe2 : ε̇ +
(
∂g

∂σ
: ∂2ψ

∂εe∂c

)
ċ

∂g

∂σ
: ∂

2ψ

∂εe2 : ∂Ω
mech

∂σ
+ ∂g

∂Rp

∂2ψ

∂r2

∂Ωmech

∂Rp
+ ∂g

∂X
: ∂

2ψ

∂α2 : ∂Ω
mech

∂X

. (19)

In the Eq. (19), ψmech,p is assumed to be independent of c.

2.2.2 Choice of potential and energy functions

The chemical free energy component in Eq. (9) is expressed in a standard form [9]:

ψchem(c) = Ef c

va
+ R T

va
(c ln(c)+ (1 − c) ln(1 − c)) , (20)

where, E f , is the formation enthalpy of a mole of the considered species, T, is the absolute temperature and,
R, is the universal gas constant. The tensor H takes the form H = η1 for the particular case of isotropy, where
1 is the second order identity tensor and

η = 1

3

Δv

va
. (21)

In the above equation, Δv, is the relaxed lattice volume after one mole of atoms is removed from the lattice,
and va , the volume occupied by a mole of atoms. Equation (4) then becomes,

ε�(c) = η(c − cref) 1 + ε�ref . (22)

Finally, the diffusion potential is expressed as:

μ = ∂ψ

∂c
− σ : H = RT

va

(
ln

(
c

1 − c

)
+ E f

RT

)
− η tr(σ ). (23)
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Following [12], the plastic term in the free energy (10) is taken as:

ψmech,p = R∞
(

r + 1

b
[exp(−br)− 1]

)
+ 1

3
Cα : α (24)

where R∞, b and C are material parameters. The thermodynamic forces are expressed from Eq. (14) as:

Rp = ∂ψ

∂r
= R∞ (1 − exp(−br)) ,

X = ∂ψ

∂α
= 2

3
Cα.

(25)

The yield function, g(σ ,X, Rp), is defined by:

g(σ ,X, Rp) = σeq − Rp − σy, (26)

where σy is the initial yield strength, σeq is the effective equivalent stress, defined as:

J2(σ − X) =
√

3

2
(σ dev − Xdev) : (σ dev − Xdev) (27)

σ dev and Xdev are defined as the deviators of σ and X, respectively.

For time-dependent plasticity, the dissipation potential is taken to be:

Ω(Rp, σ ,∇μ) = Ka

n + 1

〈
g(σ ,X, Rp)

Ka

〉n+1

+ 1

2
L(c) : ∇μ⊗ ∇μ (28)

where Ka and n are material parameters. The term 〈a〉 = a if a > 0, else 〈a〉 = 0.
Using the functions introduced in this section, Eq. (16) becomes :

ṙ = − ∂Ω

∂Rp
=
〈
σeq − Rp − σy

Ka

〉n

ε̇p = ∂Ω

∂σ
= ∂Ω

∂σeq

∂σeq

∂σ
= 3

2

〈
σeq − Rp − σy

Ka

〉n σ dev − Xdev

σeq

α̇ = −∂Ω
∂X

= − ∂Ω

∂σeq

∂σeq

∂X
= 3

2

〈
σeq − Rp − σy

Ka

〉n σ dev − Xdev

σeq
= ε̇p

(29)

For time-independent plasticity, the dissipation potentials considered reads [12]:

Ωmech = g(σ ,X, Rp), Ωchem = 1

2
L(c) : ∇μ⊗ ∇μ, (30)

The evolution of the plastic internal variable given by Eq. (17) becomes:

ṙ = −λ̇ ∂Ω
mech

∂Rp
= λ̇

ε̇p = λ̇
∂Ωmech

∂σ
= λ̇

3

2

σ dev − Xdev

σeq

α̇ = −λ̇ ∂Ω
mech

∂X
= λ̇

3

2

σ dev − Xdev

σeq
= ε̇p

(31)

It is assumed that, for the isotropic case,

L(c) = L(c)1 = Dva

RT
c(1 − c)1, (32)
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with D being the diffusivity. Then, substitution of Eq. (32) and the gradient of Eq. (23) into Eq. (17) leaves,

j = −D∇c + 1

3

DΔv

RT
c(1 − c)∇(tr(σ )) (33)

Equation (33) clearly reveals the two main driving forces controlling the vacancy flux: the concentration
gradient term arising from inhomogeneities in the composition, and the mechanical contribution via the stress
gradient.

2.3 Equilibrium composition field

2.3.1 Theory

In this part, it will be shown that, provided that an elastic solution of the purely mechanical problem is known,
an equilibrium composition field can be obtained taking the two-way coupling into account. The plastic
deformation field, εp, will be assumed to be known in the whole body and to be constant.

At equilibrium, the diffusion potential is constant and satisfies the mass balance Eq. (1). Following the
work of Cahn and Larché [7], the composition c is a function of stress alone. An expression for the equilib-
rium chemical concentration is obtained in terms of the corresponding diffusion potential, μeq, from Eq. (23)
assuming that c � 1. For the fully anisotropic case (where H 	= η1):

ceq = exp

(
va

RT
μeq − E f

RT

)
exp

( va

RT
H : σ

)
. (34)

Let us define
∂μ

∂c

∣∣∣∣
σi j =0

= 1

χ
, (35)

Using (23) and (35) for small values of c implies that

χ = va

RT
c (36)

Denoting c0 = exp
(
va
RT μeq − E f

RT

)
, the composition field is linearised in the form given by [7]:

ceq = c0 + χH : σ (37)

where χ has been evaluated for c = c0. Using (37) in (4), at equilibrium:

ε� = (ceq − cref)H + ε�ref

= (c0 − cref)H + χH ⊗ H : σ + ε�ref
(38)

According to Hooke’s law, σ = C : (ε − ε�(c)− εp), and using (38), the total strain tensor can be expressed
as,

ε = (S + χH ⊗ H) : σ + εp + ε�ref + (c0 − cref)H (39)

where S = C−1. In the above equation, the term in parentheses is called the open system compliance2 by Cahn
and Larché [7]:

S0
i jkl = Si jkl + χHi j Hkl . (40)

The remaining equation to be solved is the mechanical balance equation, which now takes the form:

div σ + f = div
(
S−1

0 (ε − εp − ε�ref − (c0 − cref)H)
)

+ f = 0 (41)

The equilibrium mechanical-diffusion problem is now equivalent to solving the purely elastic problem (41)
for a given fictitious compliance field, S0.

2 They are derived at constant diffusion potential, as shown in “Appendix 5.
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For an elastic isotropic material, the compliance components are

Si jkl = − ν

E
δi jδkl + 1

2G
(δikδ jl + δilδ jk), (42)

so that Eq. (40) gives,

S0
i jkl =

(
− ν

E
+ χη2

)
δkl + 1

2G
(δikδ jl + δilδ jk). (43)

The above expression for S0
i jkl can be further simplified if it is expressed in terms of the corresponding open

system elastic constants defined as

ν0 = ν − χη2 E

1 + χη2 E
, E0 = E

1 + χη2 E
, G0 = G, (44)

so that Eq. (43) becomes,

S0
i jkl = − ν0

E0
δi jδkl + 1

2G0
(δikδ jl + δilδ jk). (45)

If the concentration, c, or the coupling parameter, η, are small; then, the open system constants reduce to the
standard elastic constants.

2.3.2 Methodology for deriving analytical solutions of a stress-diffusion coupled problem

Consider a body B, with boundary ∂B. Furthermore, let ∂B be sub-divided into

∂B = (∂B)m1 ∪ (∂B)m2

∂B = (∂B)c1 ∪ (∂B)c2
(46)

For the mechanical sub-problem, either a displacement or a force should be applied on the boundaries (∂B)m1
and (∂B)m2, respectively. Similarly for the chemical sub-problem, either a concentration or a flux should be
applied on (∂B)c1 and (∂B)c2.

Suppose that the analytical stress solution to the associated uncoupled mechanical problem, represented
by (2) and (46)1, is known. Given the modified mechanical balance (41), then the same stress solution for the
coupled problem as that for the uncoupled one can be used provided that the modified elastic constants are
employed.

Then, the equilibrium value,μeq (23), can be inferred from the boundary conditions of the coupled problem.
For an extensive discussion on the possible cases, the reader is referred to [7]. Finally, the concentration field
ceq can be obtained from Eq. (37).

3 Finite element implementation of the coupled formulation

The coupled formulation described in the previous section has been implemented into the finite element code
Z-set in a fully coupled way, using the methodology described in [4]. The nodal variables are the concentration
c and the displacement u. The tensors σ and ε, are written in columnar format as:

{σ̃ } =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

σ11
σ22
σ33√
2σ12√
2σ23√
2σ31

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭
, {ε̃} =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ε11
ε22
ε33√
2ε12√
2ε23√
2ε31

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(47)

The vector and matrix shape functions are defined, respectively, as:

{N } = {N1, N2, . . . , Nn}[
Ñ
]

=
[

N1 0 N2 0 . . . Nn 0
0 N1 0 N2 . . . 0 Nn

]
(48)
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The corresponding 2D gradient operators are:

[B] =
[
∂N1
∂x1

. . . ∂Nn
∂x1

∂N1
∂x2

. . . ∂Nn
∂x2

]

[
B̃
]

=

⎡
⎢⎢⎣

∂N1
∂x1

0 ∂N2
∂x1

0 . . . ∂Nn
∂x1

0

0 ∂N1
∂x2

0 ∂N2
∂x2

0 . . . ∂Nn
∂x2

1√
(2)

∂N1
∂x2

1√
(2)

∂N1
∂x1

1√
(2)

∂N2
∂x2

1√
(2)

∂N2
∂x1

. . . 1√
(2)

∂Nn
∂x2

1√
(2)

∂Nn
∂x1

⎤
⎥⎥⎦

(49)

The Eq. (2) is multiplied by a test function v and integrated to obtain the weak form:

∫

V

(−σ : ε(v)+ f · v)dV +
∫

∂V

t · v dS = 0 (50)

where it is recalled that t is the traction on the surface ∂V , and ε(v) = 1
2

(∇v + ∇vT
)
. The virtual test function

{v} and the physical field {u} are discretized using the shape functions N as

{v} =
[

Ñ
] {
v̂
}
, {u} =

[
Ñ
] {

û
}

(51)

The virtual and real strain fields are:

{ε̃} ({v}) =
[

B̃
] {
v̂
}
, {ε̃} ({u}) =

[
B̃
] {

û
}

(52)

Equation (50) has to hold ∀{v̂} and thereby reduces to the discretized mechanical equilibrium residual:

{ru} =
∫

V

(− {σ̃ }T
[

B̃
]

+
[

Ñ
]
{ f })dV +

∫

∂V

[
Ñ
]
{t} dS (53)

The mass balance (1) is multiplied by a test function c� and integrated to obtain the weak form:

∫

V

(ċ c� − { j} {∇w})dV +
∫

∂V

{ j} {n} c� dS = 0 (54)

The virtual and real concentration fields, c� and c, are discretized as:

c� = {N }{ĉ�
}
, c = {N }{ĉ

}
(55)

The Eq. (54) is expressed as the discretized concentration residual as:

{rc} =
∫

V

({N } {N }T
{ ˙̂c
}

− [B]T { j})dV +
∫

∂V

{N } j dS, (56)

In order to solve the nonlinear sets of equations represented by (53) and (56) with a Newton-Raphson algorithm,
a global tangent stiffness matrix, K, is needed. Four terms are identified in the stiffness matrix:

[K ] =
[

[Kuu] [Kuc]
[Kcu] [Kcc]

]
(57)
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with components

[Kcc]i j = ∂ {rc}i

∂ ĉ j
=
∫

V

Ni N j
1

Δt
− Bik

∂ jk
∂ ĉ j

dV

[Kcu]i j = ∂ {rc}i

∂ û j
=
∫

V

−Bik
∂ jk
∂ û j

dV

[Kuu]i j = ∂ {ru}i

∂ û j
=
∫

V

−B̃ik
∂σ̃k

∂ û j
dV

[Kuc]i j = ∂ {ru}i

∂ ĉ j
=
∫

V

−B̃ik
∂σ̃k

∂ ĉ j
dV

(58)

It can be shown that the stiffness matrix derivatives need to be consistent with the choice of free energy made
in Sect. 2.2.2 :

∂ jk
∂ ĉ j

= −N j
∂L

∂c

∂μ

∂xk
− L N j

∂3ψ

∂c3

∂c

∂xk
− L

∂2ψ

∂c2

∂N j

∂xk

∂ jk
∂ û j

= 0

∂σ̃k

∂ û j
=
[
∂2ψ

∂ε∂ε

]
ki

B̃i j

∂σ̃k

∂ ĉ j
=
[
∂2ψ

∂c∂ε

]
k

N j

(59)

where:
∂μ

∂xk
= ∂2ψ

∂c2

∂c

∂xk
− Hmn

∂2ψ

∂εmn∂εpq

∂εpq

∂xk
(60)

Concerning local implicit integration of the resulting equations, classical procedures are used in the Z-set
code following [4,21]. In the above equation, and in the calculation of the flux (33), the gradient of the total
strain tensor is needed. To avoid the use of particular elements, the strain is extrapolated from the Gauss points
to the nodes and its gradient is computed with the use of the derivatives of the shape functions. This method
is the same as the one used by Thomas and Chopin [22] and Abrivard et al [1].

4 Analytical and numerical solutions to some boundary values problems

In this section, the steady-state concentration field in three examples is determined solving the coupled problems
both numerically and analytically. The analytic equilibrium solution is obtained by solving directly the coupled
equation driving the system for the first example, and the procedure described in the Sect. 2.3 for the other two.

4.1 Rotating disc

The first problem is a disc with an initial homogeneous vacancy concentration, c0, which is rotating at a
constant velocity, ω. Only elasticity is taken into account. An illustration of the rotating disc is given in Fig. 1.
The boundary conditions are chosen so that an exact solution can be found in an axisymmetric setting. The
vanishing flux on top and bottom surfaces (z = 0 and z = h) enforces a quasi-1D character (radial only) to
the solution. The numerical parameters chosen for the calculations are given in Table 1. The dimension of the
disc is d = 400 mm and h = 10 mm. The parameter χ from Eq. (36) is evaluated for c = c0 in the analytical
treatment: the boundary condition on the external surface (at r = d) represents a chemical reservoir, where a
constant concentration is maintained.

From Eqs. (1) and (17), it can be seen that the rate of change of the concentration is given by:

ċ = − div j = div (L ∇μ) = 0. (61)
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Fig. 1 Definition of the rotating disc set-up: geometry, boundary conditions and mechanical loading

Table 1 Simulation parameters used for the rotating disc problem, nickel

c0 T va E ν η ω

[.] [K] [mm3 mol−1] [GPa] [.] [.] [rad s−1]
1 × 10−4 900 6, 6 × 103 200 0.34 −0.05 2, 09 × 103

Furthermore, the stress state at a generic radial position, r, of the disc can be expressed in polar coordinates in
terms of its outer radius, d , its mass density, ρ, the angular velocity ω, and open system Poisson’s ratio, ν0,

σrr = (3 + ν0)

8
ρ ω2 (d2 − r2) , (62)

and

σθθ = ρω2

8

[
(3 + ν0)d

2 − (1 + 3ν0)r
2] . (63)

The corresponding trace of the stress tensor is then,

tr(σ ) = ρω2

4

[
(3 + ν0) d2 − 2 r2(1 + ν0)

]
. (64)

The equilibrium solution to the boundary value problem can be found by combining Eqs. (61) with (33) and
(64), i.e.

0 = div (L ∇μ) = D
∂2c

∂r2 + D

(
Δvρω2(1 + ν0)

3R T
r + 1

r

)
∂c

∂r
+ 2D

Δvρω2(1 + ν0)

3R T
c. (65)

Leading to the following differential equation:

∂2c

∂r2 +
(

Ar + 1

r

)
∂c

∂r
+ 2 A c = 0. (66)

with

A = Δvρω2(1 + ν0)

3RT
, (67)

A general solution for Eq. (66) is,

c(r) = C1 exp

(
−1

2
Ar2

)
+ C2 exp

(
−1

2
Ar2

) ∞∫

1

exp( 1
2 Ar2x)

x
dx, (68)

where C1 and C2 are two integration constants to be determined from the boundary conditions shown on Fig. 1,
that is, jr = 0 at r=0, and a prescribed concentration, c = c0, on the external surface at r = d . Thus

jr (0) = ∂μ

∂r
(0) = ∂c

∂r
(0) = 0, and c(d) = c0. (69)
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and the solution given by Eq. (68) becomes:

c(r) = c0 exp

(
1

2
A
(
d2 − r2)) . (70)

The equilibrium diffusion potential, μeq, can be obtained from Eqs. (34) and Eq. (64),

μeq = RT

va
ln c0 + E f

va
+ Δv

va
ρ ω2 ν0 − 1

12
d2. (71)

However, for the particular example of interest here, the value of μeq is actually known a priori at r = d
since both the concentration and stresses are known at that free boundary. In this case, it would also have
been possible to calculate μeq from Eq. (23) using the boundary condition and analytical stress at r = d , and
directly use it in Eq. (34) to retrieve Eq. (70).

The numerical simulation recovers exactly the analytical coupled solution of this problem, as shown by the
profile of concentration given on Fig. 2. For this example, a reduction of 17 % of the initial concentration at
r = 0 (η = −0.05), and 1.7 % for η = −5×10−3 is found. Note that the stress σrr is approximately 1,000 MPa,
which would in reality induce plasticity. The value of η is critical, and also subject of discussion since various
different parameters can be found in the literature, even with positive signs in aluminium (e.g. see [23] and [8]).

4.2 Vacancy diffusion around the core of an edge dislocation

Consider an edge dislocation of Burgers vector b, located at a point with coordinates (x, y) = (0, 0) in
an infinite plate with an initial homogeneous vacancy concentration, cref = c0. The edge dislocation was
introduced in the finite element model by imposing a shear eigenstrain in a thin semi-infinite strip of thickness
h, with magnitude −b/h, and only elasticity is taken into account. In order to determine the equilibrium
vacancy concentration state in the system, the following boundary conditions are imposed: a vanishing flux is
assumed on the dislocation core boundary (with a radius equal to 2b), and a constant concentration c = c0, on
the far-field boundaries, i.e. the dislocation is considered to be in a chemical reservoir. The set-up is illustrated
on Fig. 3.

In the analytical solution, the parameter χ from Eq. (36) was determined for c = c0 using the chemical
reservoir boundary conditions. The stress field in Cartesian coordinates around the edge dislocation takes the
form of the Hirth and Lothe [11] solution, albeit with the open system elastic constants instead of the standard
ones. Here,

σxx = − G0b

2π(1 − ν0)

y
(
3x2 + y2

)
(
x2 + y2

)2 , (72)

0 0.2 0.4 0.6 0.8 1
0.8

0.85

0.9

0.95

1

r/d

c/
c 0

Analytical
FEM

Fig. 2 Concentration profile in the rotating disc, normalised by c0, as a function of the normalised distance from the axisymmetric
axis
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σyy = G0b

2π(1 − ν0)

y
(
x2 − y2

)
(
x2 + y2

)2 , (73)

σzz = ν0 (σxx + σyy), (74)

σxy = G0b

2π(1 − ν0)

x(x2 − y2)

(x2 + y2)2
(75)

The analytical vacancy concentration solution can be approximated with the linearised Eq. (37):

ceq = c0 − χη(1 + ν0)
Gob

π(1 − ν0)

x2 y + y3

(x2 + y2)2
(76)

The parameters used to obtain the numerical and analytical results are given in Table 2. The vacancy formation
energy is close to the value given in [20], from which c0 is obtained. Other values are taken from [10] for
aluminium. The analytical and numerical results are given in Figs. 4 and 5.

The evolution of the normalised steady-state vacancy concentration profiles around the dislocation core
(along y/b at x = 0) obtained both analytically and numerically are depicted in Fig. 4, where an excellent
correlation is found even at a location as close as 5b from the centre of the dislocation core. The corre-
sponding contour plots of the steady-state normalised vacancy concentration around the edge dislocation
core is given in Fig. 5. As expected, vacancies tend to relieve the hydrostatic pressure around the disloca-
tion core by migrating from the tensile regions to the compressive ones, a classical result given by Hirth
and Lothe [11]. Finally, it is possible to analytically obtain the effect of the vacancy concentration on the
stress. If Pref and P are the pressure around the dislocation core, without and with vacancies respectively,
then:

P

Pref
= (1 + ν0)(1 − ν)

(1 + ν)(1 − ν0)
(77)

Fig. 3 Model of the edge dislocation problem (deformed configuration, zoomed on the core): an eigenstrain ε�12 = −b/h is
imposed in the stripped zone, and a cut-out of radius 2b is made to exclude the core, with a vanishing flux boundary condition.
A concentration c0 is imposed on the far-field boundaries

Table 2 Parameters used to simulate vacancy diffusion around an edge dislocation

h c0 T va η E ν

[nm] [.] [K] [m3 mol−1] [.] GPa [.]
0.5 10−4 700 10−5 −0.05 70 0.34
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−300 −200 −100 0 100 200 300
0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

c/
c 0

y/b

FE
Analytical

Fig. 4 Variations of the normalised steady-state vacancy concentration profile along y/b at x = 0, obtained both analytically and
numerically
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Fig. 5 Contour plot of the numerically obtained equilibrium vacancy concentration distribution normalised by c0. The vacancies
tend to relieve the hydrostatic pressure around the dislocation core by migrating from the tensile regions to the compression ones

which is independent of position. For instance, P
Pref

= 0.9991 and 0.9242 for c0 = 10−3 and c0 = 10−1,
respectively. Even considering the typical concentrations values encountered at homologous temperature, the
influence of vacancies on the stress state is negligible in most cases.

4.3 Perforated plate subject to a far-field tensile stress

The last example concerns the analysis of an infinite plate with a centred hole of radius Rh = 1μm subject
to a far-field tensile stress σ∞. First, a pure elastic case will be discussed, then an elastic perfectly plastic
model with yield stress σy will be considered. The far-field stress σ∞ is applied along the x−axis (see Fig. 6).
The steady-state solution to the coupled diffusion elasticity problem in polar coordinates (r, θ)—θ being the
angle with respect to the x axis—is given by the classical one in terms of the open system Poisson’s ratio, ν0,
namely
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σrr = σ∞
2

(
1 −

(
Rh

r

)2
)

+ σ∞
2

(
1 + 3

(
Rh

r

)4

− 4

(
Rh

r

)2
)

cos(2θ),

σθθ = σ∞
2

(
1 +

(
Rh

r

)2
)

− σ∞
2

(
1 + 3

(
Rh

r

)4
)

cos(2θ),

σzz = σ∞ν0

(
1 − 2

(
Rh

r

)2

cos(2θ)

)
,

σrθ = −σ
∞

2

(
1 − 3

(
Rh

r

)4

+ 2
(a

r

)2
)

sin(2θ).

(78)

Then, the corresponding trace of the stress tensor is

tr(σ ) = (1 + ν0) σ∞

(
1 − 2

(
Rh

r

)2

cos(2θ)

)
. (79)

The far-field stress was chosen so that the plate deforms uniaxially along the x-axis at the far field by 0.2 %.
The parameters used in the analytical and numerical calculations are given in Table 3 for aluminium. The
analytical vacancy concentration field is obtained from Eq. (37) using the expression for the trace of the stress
tensor, Eq. (79). The value of the parameter χ is taken for c = c0, again, due to the chemical reservoir type of
the boundary condition.

A contour plot of the numerically obtained distribution of the vacancy concentration at equilibrium within
the plate, normalised by c0, is shown for the elastic case in Fig. 6. The stress concentration factors, defined
as the ratio σyy/σ∞ at the inner hole boundary are known to be −1 and 3 for θ = 0◦ and 90◦, respectively.
As a result of these stress concentration effects, vacancies redistribute around the hole, see Fig. 6. Red regions
(θ = 0◦) exhibit a concentration above the initial value and the blue ones (θ = 90◦) a decrease relative to c0.
The hole radius being small, the stress gradients act in this case as a strong driving force for the vacancy fluxes.

To illustrate the extended theory, a perfectly plastic behaviour is now incorporated in the model. Here,
plasticity is expected to relax the stresses locally, leading to smaller stress gradients and hence affecting the

x/R
h

y/
R

h

0 2 4 6 8 10
0

2

4

6

8

10

c/
c 0

0.97

0.98

0.99

1

1.01

1.02

1.03

x

y

Fig. 6 Contour plot of the numerically obtained equilibrium vacancy concentration distribution normalised by c0, obtained
numerically in the elastic case, around a hole in a plate

Table 3 Simulation parameters used in the infinite plate with a centred hole case

c0 T va E σy ν η Rh

[.] [K] [m3.mol−1] [GPa] [MPa] [.] [.] [µm]
10−4 700 10−5 70 200 0.34 −0.05 1.
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fluxes and the equilibrium state. The trace of the stress distribution around the hole (r = Rh) at different angles
θ , is given in Fig. 7 for various initial concentrations. The coupled open system elastic constants influence the
stresses only for high vacancy concentrations, the termχ being negligible in Eq. (44) when c = 10−4. When the
hypothesis c � 1 made in the analytical developments is verified, the FE solution is indistinguishable from the
analytical solution. However, this is no longer true when c = 0.1, explaining the small discrepancy observed
between the analytical and FE solutions. When c is large, the analytical solution tends to underestimate the
stress compared to the FE solution. The reduction of the stress gradient in the plastic case is clearly visible for
θ > 40◦.

The results in Fig. 8 are shown in terms of the normalised vacancy concentration along the surface of the
hole. Also shown are the concentration profiles predicted analytically using both the standard elastic constants
and the open system elastic ones (denoted ’Coupled Analytical’ in the figure), and the numerically obtained
results (FE) in the elastic and plastic cases. In the plastic case, the methodology presented in Sect. 2.3 is applied.
The stress field calculated numerically is used to compute the concentration field analytically, using Eq. (37),
and an adequate agreement is found with the coupled FE solution and the semi-analytical one.

Finally, in the plastic case, the plate is loaded as before until equilibrium is reached, and then unloaded.
Due to the plastic deformation that has occurred on the top side of the hole, the unloaded configuration is not
homogeneously deformed. This leads to residual stresses upon unloading giving a non-uniform distribution of
vacancies in the unloaded configuration. This is visible in Fig. 9 numerical results.
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c
0
 = 10−1

c
0
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Fig. 7 Variation of the trace of the stress tensor around the hole for two different values of initial vacancy concentration, without
and with the effect of the open system (ie, coupled) elastic constants. The effect of the concentration on the stress is noticeable
for high concentrations
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Fig. 8 Concentration profile around the hole of a plate loaded uni-axially, obtained analytically and numerically for the elastic
case, and numerically for the elasto-plastic one
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Fig. 9 Residual distribution of vacancies obtained after unloading in the plastic case. Due to the stress concentration factor on
the top of the hole, plastic deformation heterogeneities upon unloading give rise to residual stresses that lead, in turn, to vacancy
redistribution

5 Summary

A thermodynamically consistent diffusion-stress coupling framework has been developed for elasto-
viscoplastic solids. To obtain the equilibrium stress and composition fields, a coupled solution of the equations
governing mechanical and chemical equilibrium is normally required. However, it is possible to obtain both
fields by only solving a modified mechanical equilibrium equation, in which modified elastic constants account
implicitly for the chemical equilibrium. First introduced by Cahn and Larché for an elastic solid, they are called
open system elastic constants, derived at constant diffusion potential, the procedure being similar to the one
giving adiabatic compliance instead of isothermal one. It has been shown that, in presence of plasticity, these
derivations are still valid, and enable an analytical solution of the concentration field to be obtained knowing
the numerical stress field. Three coupled problems have been treated analytically and numerically to illustrate
the efficiency of this method.

The coupled diffusion-stress formulation has been implemented in a finite element framework in a fully
coupled way. The resulting numerical predictions of different problems capture the main features of the coupled
phenomena predicted analytically. When the concentration is very small, the values of the open system constants
are close to the conventional values, and the concentration field can be calculated from the stress field obtained
using either set of constants. However, when the concentration is relatively high, it becomes necessary to use
the open system compliances for the simulations to remain in agreement with the analytical solutions. Finally,
if the concentration is not negligible compared to 1, a discrepancy between the FEM and analytical solutions
arises.

The role of plasticity on the local relaxation of the stress state and its effects on the corresponding equilibrium
concentration field has been illustrated in a simple example. The plasticity model was limited to a perfect one
in the simulations, although the proposed theory accounts for hardening.

The study of the redistribution of vacancies around an edge dislocation is of interest, amongst other
applications, for the modelling of dislocation climb assisted by diffusion, by providing an explicit framework
to determine the local vacancy concentration distribution around the dislocation core. Accounting for the
effects of stress on point defect diffusion is also relevant for modelling the formation of stable vacancy clusters
in irradiated materials. In this case, the concentration of vacancies is high, which has been shown to have a
non-negligible effect on the open system constants. Recent work in this area by [14], based on phase-field
techniques, neglected the effects of stress so that no effect of applied load could be accounted for on void
growth. If omitted, stress gradients are unable to affect the vacancy fluxes responsible for altering the shape
of the void and their kinetics. The framework presented here provides the necessary analytical tools to pursue
such goal.
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Appendix: Derivation of open system elastic constants

Contrary to the approach presented in [7], the derivation is here based on the enthalpy, h(c, σ , p,α), for
simplicity. The diffusion potential and the strain tensor components can be expressed as

μ = ∂h

∂c

∣∣∣∣
σi j

, and − εi j = ∂h

∂σi j

∣∣∣∣
c

. (80)

From Eq. (80), the so-called Maxwell relation can be obtained:

∂μ

∂σkl

∣∣∣∣
c

= ∂2h

∂σkl∂c
= ∂2h

∂c∂σkl
= − ∂εkl

∂c

∣∣∣∣
σkl

(81)

Recalling that the strain can be partitioned as,

ε = εe + H(c − cref)+ ε�ref + εp (82)

and expressing the elastic strain tensor in terms of the stress tensor and the compliance tensor, S = C−1, yields,

ε = S : σ + H(c − cref)+ ε�ref + εp (83)

Differentiating the strain components at fixed internal variables,

dεi j = ∂εi j

∂σkl

∣∣∣∣
c

dσkl + ∂εi j

∂c

∣∣∣∣
σi j

dc, (84)

and the diffusion potential, μ,

dμ = ∂μ

∂σkl

∣∣∣∣
c

dσkl + ∂μ

∂c

∣∣∣∣
σi j

dc, (85)

solving for dc in Eq. (85),

dc =
(

dμ− ∂μ

∂σkl

∣∣∣∣
c

dσkl

)(
∂μ

∂c

∣∣∣∣
σi j

)−1

, (86)

and substituting the Maxwell relation into Eq. (86) leaves,

dc =
(

dμ+ ∂εkl

∂c

∣∣∣∣
σkl

dσkl

)(
∂μ

∂c

∣∣∣∣
σi j

)−1

. (87)

Finally, substituting Eq. (87) into Eq. (84) and re-arranging yields,

dεi j =
⎛
⎝ ∂εi j

∂σkl

∣∣∣∣
c
+ ∂εi j

∂c

∣∣∣∣
σi j

∂εkl

∂c

∣∣∣∣
σkl

(
∂μ

∂c

∣∣∣∣
σi j

)−1
⎞
⎠ dσkl + ∂εi j

∂c

∣∣∣∣
σi j

dμ. (88)

Cahn and Larché [6] defined the term in brackets in Eq. (88) as the open system compliance at a constant
potential μ, or S0

i jkl . Thus,

S0
i jkl = ∂εi j

∂σkl

∣∣∣∣
μ

= ∂εi j

∂σkl

∣∣∣∣
c
+
(
∂εi j

∂c

∣∣∣∣
σi j

∂εkl

∂c

∣∣∣∣
σkl

)(
∂μ

∂c

∣∣∣∣
σi j

)−1

. (89)

The expression for the open system compliance defined above can be obtained by recalling the following
relations,

∂εi j

∂σkl

∣∣∣∣
c

= Si jkl , and
∂εi j

∂c

∣∣∣∣
σkl

= Hi j . (90)

Then, Eq. (40) is retrieved.
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