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Abstract Recent advances in phase field modelling

include the description of elastoviscoplastic material

behaviour of the phases combined with diffusion and

phase transformation. The corresponding models can

be classified into two main groups of theories, referred

to as interpolation and homogenisation models in the

present work. It is shown that both approaches

strongly differ concerning the question of inheritance

of plastic deformation after the passing of a phase

transformation front. Inheritance of plastic deforma-

tion is to be distinguished from the inheritance of the

microstructure hardening and the corresponding dis-

location structures. That is why the analysis is

performed in the absence of hardening in the consti-

tutive model. Finite element simulations of the growth

of elastic misfitting precipitates embedded in a rate-

independent elastoplastic matrix material reveal that

the interpolation model allows for total inheritance of

plastic deformation in contrast to the homogenisation

model. The residual stress field and the growth kinetics

are shown to be impacted by this essential property of

the models. The results suggest that new models

should be designed that allow for partial and con-

trolled inheritance.

Keywords Phase field � Plasticity �
Homogenization � Inheritance � Finite element

1 Introduction

The phase field approach currently emerges as a

powerful method to simulate the evolution of micro-

structures under various thermodynamical and

mechanical driving forces [35, 38]. Phase transforma-

tions are then treated within a field theory that provides

both morphological changes of phases and the corre-

sponding kinetics. The rôle of mechanics in this

process has been seen to be essential in bringing

additional potentially strong couplings with chemical

processes [24]. This rôle has long been limited to

elasticity effects, for instance in strain induced mor-

phological transformations [41], although the impor-

tance of viscoplasticity was known from an

experimental perspective [16, 30] or based on coupled

diffusion and mechanics [7]. Recent advances of the

phase field approach deal with the introduction of

plastic and viscoplastic phenomena in addition to

chemical and elastic processes [4, 5, 17, 18, 21,

34, 46]. Standard elastoviscoplastic nonlinear models

of material behaviour are then incorporated in the form

of additional time differential equations for internal
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variables associated with dissipative processes [8, 29].

The coupling between elastoviscoplasticity and the

phase field approach has been introduced according to

two main model classes. In the first one, called the

‘‘interpolation model’’ in the present work, all material

points are endowed with the same set of mechanical

constitutive equations (including elasticity, von Mises

plasticity or crystal plasticity, etc.) but the material

parameters (including the elasticity moduli, the yield

stress, the hardening modulus, etc.) differ in the phases

and are interpolated within the diffuse interfaces

[18, 21]. In the second model class, the phase field

method is combined with the homogenisation approach

well-known in the mechanics of heterogeneous mate-

rials [4, 5, 36, 37]. Arbitrary constitutive equations can

then be used for each phase and homogenisation rules

are applied to the free energy densities and dissipation

potentials. The choice of the mixture rule has a

significant influence on the behaviour of the diffuse

interfaces, as recently discussed in [4, 12].

The question then arises of the evolution of

plasticity-related variables at a material point after

the passing of a phase transformation front. The

question of inheritance of plastic deformation and

hardening existing prior to phase transformation has

already been addressed, although insufficiently, from

the experimental perspective, for instance in the

context of thermomechanical treatments [20] or the

behaviour of TRIP steels [27]. But the question is

largely open from the modelling point of view in the

context of phase field approaches, despite preliminary

attempts e.g. [1, 2, 28].

The question of inheritance of internal variables

associated with plastic deformation when an interface

sweeps a plastified zone of bulk phase, during

migration of phase boundaries has not been discussed

in most existing phase field models involving nonlin-

ear material behaviour. The inheritance is likely to

depend on the nature of the interface, but the question:

‘‘Does coherent and incoherent interface motion favor

recovery of the hardening of the mother phase?’’ has

no obvious answer, and will deserve a particular

attention in the model development in order to reach

realistic comparison with experimental results.

Indeed, it is essential to know if the newly formed

phase inherits all or part of the plastic strain or strain

hardening of the parent phase, in order to predict the

existence of residual stresses by structural calculations

for instance.

It is first necessary to distinguish the question of

inheritance of plastic deformation from that of

strain hardening. Plastic deformation is associated

with the motion of dislocations that do not neces-

sarily stay in the material volume element and lead

to a change of the local reference configuration for

the calculation of elastic stresses. In contrast

hardening is accompanied by the storage of dislo-

cations that can be destroyed by the passing of a

phase boundary or that can leave debris contribut-

ing to the hardening of the new phase. Alterna-

tively, dislocations may be repelled by the moving

interface. The mentioned previous references deal

with the question of inheritance of strain hardening,

i.e. of dislocation structures. In contrast, the ques-

tion of inheritance of plastic deformation itself has

not been addressed yet in the context of the recent

advanced phase field models. The present work is

limited to the consideration of this question, leaving

the consideration of inheritance of strain hardening

to future work. That is why the analysis is

performed in the absence of hardening in the

constitutive model.

The objective of the present work is to investi-

gate the properties of existing phase field models

with respect to the question of inheritance of plastic

deformation during phase transformation. It will turn

out that both classes of phase field models, namely

the interpolation and homogenisation models, dis-

play strongly different plastic strain inheritance

behaviours. The development of plastic deformation

in the mother phase can be due to prior mechanical

loading of the material or to local stresses induced

by the misfit strain accompanying the motion of the

phase transformation front. Inheritance can be total,

partial or absent if the plastic strain tensor at the

material point after the passing of the transformation

front, is equal to that of the mother phase at that

particular point, a portion of it or simply vanishing,

respectively. In the case of total or partial inheri-

tance the plastic residual shape of the structure is

left totally or partially unchanged after the passing

of a moving phase boundary. In contrast, the initial

shape is completely recovered in the case of shape

memory alloys for instance corresponding to no

inheritance at all. The situation is more complicated

in the case of plastic flow occurring during phase

transformation due to external loading or local

plastic deformation induced by high stresses
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associated with transformation eigenstrains. The

objective is then to study the impact of the choice

of interpolation schemes on the inheritance of

plastic deformation during phase transformation,

depending on the particular class of phase field

models. The analysis is limited to the small

deformation framework for the sake of simplicity.

The formulation of both classes of phase field

models is presented in Sect. 2, including the chemical

and mechanical constitutive equations and the specific

interpolation schemes characterising the diffuse inter-

face response. Two simple situations are then consid-

ered in Sect. 3 to illustrate the inheritance behaviour of

each class of models. They deal with the growth of

elastic precipitates embedded in an elastoplastic

matrix described by associated von Mises plasticity

in the absence of hardening. For the same intrinsic

nonlinear behaviour of individual phases, the concen-

tration, plastic strain and stress fields will be shown to

differ after precipitate growth depending on the phase

field formulation.

In the following, intrinsic notations are used.

Scalar, first, second and fourth ranks tensors are

denoted by a; a; a� and a�, respectively. Simple and

double contractions read � and :, respectively.

2 Model description

2.1 Balance equations

The governing equations of the coupled diffusion-

phase transformation-mechanical problem are the

mass balance for the conserved concentration field

cðx; tÞ, the Ginzburg-Landau equation for the non-

conserved order parameter /ðx; tÞ, and the static

equilibrium for the stress tensor r�ðx; tÞ in the absence

of volume forces:

_cþr: �Lð/Þ r of

oc

� �� �
¼ 0

M _/� AD/þ of

o/
¼ 0

r:r� ¼ 0

ð1Þ

where M is the mobility parameter, f is Helmholtz free

energy density and L(/) is the Onsager coefficient in

the case of isotropic materials.

2.2 Helmholtz free energy density

2.2.1 Partition of free energy

The total free energy F of the body is defined as the

integral over the volume V of a free energy density f,

which is split into a chemical free energy density

contribution fch, a coherent mechanical energy density

fu, and a quadratic gradient contribution. Assuming

that the free energy density depends on the order

parameter /, its gradient r/, the concentration c, the

elastic strain tensor e�
e and the set of internal variables

Vk associated to material hardening, we have

Fð/;r/; c; e�
e;VkÞ ¼

Z
V

f ð/;r/; c; e�
e;VkÞ dv

¼
Z
V

h
fchð/; cÞ þ fuð/; c; e�

e;VkÞ þ
A

2
jr/j2

i
dv

ð2Þ

where the usual quadratic isotropic Ginzburg term was

chosen with respect to the gradient of the order

parameter /.

The total strain tensor e� is the symmetric part of the

gradient of the displacement field. It is partitioned into

the elastic strain e�
e, the eigenstrain e�

H due to phase

transformation and the plastic strain e�
p:

e� ¼ e�
e þ e�

H þ e�
p ð3Þ

2.2.2 Chemical contribution

Considering a two-phase binary alloy, the chemical

free energy density fch of the binary alloy is a function

of the order parameter / and of the concentration field

c. In order to guarantee the coexistence of both phases

a and b discriminated by /, fch must be non-convex

with respect to /. Following [25], fch is built with the

free energy densities of the two individual phases fa
and fb as follows:

fchð/; cÞ ¼ hð/ÞfaðcÞ þ hð/ÞfbðcÞ þWWð/Þ ð4Þ

The subscripts a and b indicate the two coexisting

phases. Here, the function hð/Þ ¼ 1� hð/Þ is taken as

hð/Þ ¼ /2ð3� 2/Þ, and Wð/Þ ¼ /2ð1� /Þ2 is the

double well potential accounting for the free energy

penalty of the interface. The height W of the potential
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barrier is related to the interfacial energy c and the

interfacial thickness d as W ¼ 6Kc=d. Assuming that

the interface region ranges from / = h to / = 1 - h,

then K ¼ logðð1� hÞ=hÞ. In the present work h = 0.05

following [3, 25].

The densities fa and fb are chosen to be quadratic

functions of the concentration only:

faðcÞ ¼
1

2
kaðc� aaÞ2 and fbðcÞ ¼

1

2
kbðc� abÞ2

ð5Þ

The parameters ka, kb are the free energy curvatures

with respect to concentration. They are assumed to be

identical in the present study: ka = kb = k. aa and ab

are the equilibrium concentrations for a and b phases

respectively [3].

2.2.3 Mechanical contribution

The second contribution to the free energy density in

Eq. (2) is due to mechanical effects. Assuming that

elastic behaviour and hardening are uncoupled, the

mechanical part of the free energy density fu is

decomposed into a coherent elastic energy density fe
and a plastic part fp as:

fuð/; c; e�
e;VkÞ ¼ feð/; c; e�

eÞ þ fpð/; c;VkÞ ð6Þ

The specific form of fuð/; c; e�e;VkÞ will be detailed in

the next sections.

There are essentially two ways of introducing linear

or nonlinear mechanical constitutive equations into

the standard phase field approach, that are presented in

the following.

2.3 Interpolation model

The material behaviour is described by a unified set of

constitutive equations including material parameters

that explicitly depend on the concentration or on the

phase field variable. Each material parameter is

usually interpolated between limit values known for

each phase. This is the formulation adopted in the

finite element simulations of Cahn-Hilliard like equa-

tions coupled with viscoplasticity by [6, 39, 40, 43] for

tin-lead solders, also derived in [14, 15]. The same

methodology is used in [17, 18] to simulate the rôle of

viscoplasticity on rafting of c0 precipitates in single

crystal nickel base superalloys under load. For

instance, when an elastic phase coexists with an

elastic-plastic one, the plastic yield threshold is

interpolated between the actual value in the plastic

phase and a very high unreachable value in the elastic

phase, e.g. [10].

The diffuse interface behaviour resulting from this

procedure can be compared to the ones commonly

used in phase field models, as popularized by

Khachaturyan and co-workers, e.g. [42]. According

to the latter, mixture rules are adopted respectively for

eigenstrain and the tensor of elasticity moduli:

e�
H ¼ / e�

H

a þ ð1� /Þ e�
H

b ; C� ¼ / C� a þ ð1� /ÞC� b

ð7Þ

where e�
H

a;b and C� a;b respectively are the eigenstrain

and elasticity tensors of the individual phases.

Hooke’s law then relates the strain to the stress tensors

by the following relations:

r� ¼ C� : ðe� � e�
HÞ

¼ ð/ C� a þ ð1�/ÞC� bÞ : ðe� �/ e�
H

a � ð1�/Þ e�
H

b Þ

ð8Þ

In that way, the elastic energy of the effective

homogeneous material at a material point cannot be

interpreted as the average of energy densities of both

phases [4, 5]. The elastic energy is then postulated as:

feðc; e�
eÞ ¼ 1

2
e�

eðcÞ : C� ðcÞ : e�
eðcÞ

¼ 1

2
ðe� � e�

p � e�
HðcÞÞ : C� ðcÞ : ðe� � e�

p � e�
HðcÞÞ

ð9Þ

where the explicit concentration dependence of mate-

rial parameters has been introduced. The second term

fp in (6) accounts for mechanical energy contributions

due to hardening effects. Plastic or viscoplastic

deformation is generally associated with dislocation

storage and therefore energy storage to be included in

the free energy density. We consider here that the

system consists of a two-phase elastoplastic binary

alloy with one non-linear isotropic hardening and one

non-linear kinematic hardening in each phase, follow-

ing standard formulations of elastoviscoplastic con-

stitutive equations [8, 29]. The specific plastic free

energy is chosen as a quadratic function of all state

variables:
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fpð/; c; a� ; rÞ ¼
1

3
Hð/; cÞa� : a� þ

1

2
bð/; cÞQð/; cÞr2

ð10Þ

where a� and r respectively are a tensorial kinematic

and a scalar isotropic hardening variable, and H, Q and

b are material parameters. In particular, H represents a

plastic kinematic hardening modulus whereas the

meaning of Q and b will become apparent at the

end of this section. Each parameter is interpolated

between limit values known for each phase as

follows:

c ¼ / ca þ ð1� /Þ cb

b ¼ / ba þ ð1� /Þ bb

Q ¼ / Qa þ ð1� /ÞQb

8><
>: ð11Þ

A yield criterion g(/, c) is introduced:

gðr� ;X� ;R;/Þ ¼ reqðr� ;X� Þ � r0 � Rð/Þ with

Rð/Þ ¼ / Ra þ ð1� /ÞRb ð12Þ

where r0 is the initial yield stress and R subsequent

isotropic hardening according to

R ¼ ofp

or
¼ bQ r ð13Þ

As a result, r0 ? R is the radius of the elasticity

domain. The function req is chosen as the von Mises

equivalent stress measure:

req ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2
ðs� � X� Þ : ðs� � X� Þ

r
; with

s� ¼ r� �
1

3
ðtrace r�Þ1� ð14Þ

The tensors s� and X� respectively are the deviatoric

stress tensor and the back-stress tensor accounting for

kinematic hardening:

X� ¼
ofp

oa�
¼ 2

3
Ha� ð15Þ

According to the normality rule, the plastic flow rule

takes the form

ð16Þ

where the direction of plastic flow is n� ¼ 3=2s�=r
eq in

the case of the von Mises criterion and _k is the plastic

multiplier. The evolution laws for isotropic and

kinematic variables can be taken, for instance, from

Chaboche model [8]:

_r ¼ _k 1� R

Q

� �
¼ _kð1� brÞ; and

_a� ¼ _k n� �
3C
2H

X�

� �
ð17Þ

Nonlinear kinematic hardening is characterized by the

additional material parameter C.

In the case of rate-independent plasticity consid-

ered here for simplicity, the plastic multiplier _k is

determined from the consistency condition dg/dt = 0

and g = 0 under plastic loading condition1

2.4 Multiphase approach: homogenisation

method

An alternative approach for formulating mechanical

constitutive equations within a phase field framework

is to resort to the multiphase approach as initially

proposed in [35, 36, 38]. Within this framework, it is

possible to apply some results of the homogenisation

theory developed in the mechanics of heterogeneous

materials [8, 33, 45] as demonstrated in [4, 5, 12].

One distinct set of constitutive equations is attrib-

uted to each individual phase a, b. Each phase at a

material point then possesses its own stress/strain

tensors r�a;b; e�a;b. The overall strain and stress quan-

tities r� ; e� at this material point are defined as the

averages of the corresponding tensors attributed to

each phase. This is particularly important for points

inside the smooth interface zone. At this stage, several

homogenisation rules are available to perform the

averaging. This homogenisation rule can also be

interpreted as specific interpolation relations since

there is generally no clear physical picture of the

distribution of phases at the atomic scale underlying

each material point of the diffuse interface. The

advantage of the approach is that it makes it possible to

mix strongly different types of constitutive equations

for each phase, like hyperelastic nonlinear behaviour

for one phase and conventional elasto-plastic model

1 The first condition, g = 0, means that the state of stress is on

the actual yield surface, the second _g ¼ 0 is the continuing

plastic loading condition. Elastic unloading occurs when g\0

or _g\0 , the internal variables then keeping a constant value.
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with internal variables for the other one. No corre-

spondence of material parameters is needed between

the respective constitutive laws of the phases. This is

the approach proposed in [36] for incorporating

elasticity in a multi-phase field model. For that

purpose, the authors resorted to a well-known homo-

geneous stress hypothesis (Reuss model) taken from

homogenisation theory in the mechanics of heteroge-

neous materials [31, 32]. This approach has been

applied to compute the effect of chemically induced

strain on pearlite growth kinetics in [37].

It must be emphasised that this procedure is very

similar to what has already been proposed for handling

diffusion in phase field models [26]. Two concentra-

tion fields ca and cb are indeed introduced, and the real

concentration field is obtained by a mixture rule

together with an internal constraint on the diffusion

potentials, called quasi-equilibrium constraint in [13].

Introducing two concentration fields gives an addi-

tional degree of freedom for controlling the energy of

the interface with respect to its thickness. Further-

more, the chemical and mechanical coupling inside

the diffuse interface sometimes leads to spurious

effects like too high stresses or stress fluctuation, due

to the often unrealistic interface thickness that one is

forced to use in practical applications. Adding addi-

tional degrees of freedom like fictitious concentration

or other state variables for describing the stress/strain

behaviour within a diffuse interface can be useful to to

get rid of such unwanted behaviour.

The homogenisation procedure in the mechanics of

heterogeneous materials consists in replacing an

heterogeneous medium by an equivalent homoge-

neous one, which is defined by an effective constitu-

tive law relating the macroscopic variables, namely

macroscopic stress r� and strain e� tensors, which are

obtained by averaging the corresponding non-uniform

local stress and strain in each phase. In the case of two-

phase materials:

e� ¼
1

V
X

k¼a;b

Z
Vk

e�k dv and r� ¼
1

V
X

k¼a;b

Z
Vk

r�k dv

ð18Þ

where V ¼ Va [ Vb is the underlying material repre-

sentative volume element (RVE). In many cases, the

actual geometry of the RVE is left unspecified but, for

instance, the homogenisation scheme used in the

phase-field/microelasticity approach in [12], corre-

sponds to a laminate microstructure of the interface.

Following a simple representation depicted in Fig. 1,

each material point, i.e. V, within a diffuse interface

can be seen as a local mixture of the two abutting

phases a and b with proportions fixing Va and Vb given

by complementary functions of /.

In the case of a two-phase material, the strain and

stress at each material point are defined by the

following mixture laws which would proceed from

space averaging in a conventional homogenisation

problem, but which can be seen as interpolations in the

present case:

e
�
¼ hð/Þ e

� aþ hð/Þ e
� b and r

�
¼ hð/Þr

� aþ hð/Þr
� b

ð19Þ

where e� a; e� b are the local strains and r� a; r� b are the

local stresses attributed, at a material point, to the a
and b phases respectively, and h(/) is a polynomial

function varying in a monotonic way from 0 to 1

between both phases, as usual in phase field

approaches. Note that in homogenisation theory, one

has h(/) = / which turns out to be insufficient for the

modelling of evolving microstructures.

According to the homogenisation theory, the

effective elastic and plastic free energy densities are

given by the rule of mixtures as follows:

feð/; c; e�
e
a; e�

e
bÞ ¼ hð/Þ feaðc; e�

e
aÞ þ hð/Þfebðc; e�

e
bÞ

ð20Þ

Fig. 1 Schematic illustration of the underlying material

representative volume element V at each material point of a

diffuse interface: The real effective variable W appears with a

thick line, whereas the variables attached to each phase Wa and

Wb are with thinner lines
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fpð/; c;Vka;VkbÞ ¼ hð/Þ fpaðc;VkaÞ þ hð/Þfpbðc;VkbÞ
ð21Þ

All state and internal variables are therefore duplicated

and corresponding variables e�
e
a;b and Vka,bVka;b are

introduced.

In the proposed model, the reversible mechanical

behaviour of each individual phase is governed by a

convex mechanical free energy potential, which can

be decomposed, using Eq. (6), into the contributions of

each phase.

2.4.1 Elastic energy density

The effective elastic energy is expressed in terms of

the elastic energies of both phases weighted by the

complementing functions h(/) and hð/Þ. The corre-

sponding free energy densities fea, feb are introduced as

quadratic potentials with respect to the elastic strain

contributions of the different phases:

fe ¼ hð/Þ fea þ hð/Þfeb ð22Þ

with

feaðe�
e
aÞ ¼

1

2
e�

e
a : C� a : e�

e
a and

febðe�
e
bÞ ¼

1

2
e�

e
b : C� b : e�

e
b ð23Þ

where the fourth-order tensors of elasticity moduli,

ðC� a;C� bÞ, of the individual phases are introduced.

The total strains, ðe� a; e� bÞ, the eigenstrains,

ðe� H

a ; e�
H

b Þ and the plastic strain tensors ðe� p
a; e�

p
bÞ are

introduced for both phases at each material point of the

whole body. The partition hypothesis, already used for

the effective total strain tensor in (3), requires, in a

similar way, a decomposition of the total strain in each

phase into elastic, eigenstrain and plastic parts:

e� a ¼ e�
e
a þ e�

H

a þ e�
p
a and e� b ¼ e�

e
b þ e�

H

b þ e� b

ð24Þ

The eigenstrains and tensors of elastic moduli at each

point may then depend on the local concentration c,

but not on the order parameter /.

At this stage, the Voigt/Taylor assumption from

homogenisation theory is introduced stating that

e� a ¼ e� b ¼ e� ð25Þ

so that the local Hooke laws take the form

r
� a ¼ C

� a : ðe
�
� e

�
H

a � e
�

p
aÞ; r

� b ¼ C
� b : ðe

�
� e

�
H

b � e
�

p
bÞ

ð26Þ

The resulting global Hooke law follows from the

averaging rule (19):

r� ¼ hð/ÞC� a : ðe� � e�
H

a � e�
p
aÞ

þ hð/ÞC� b : ðe� � e�
H

b � e�
p
bÞ ð27Þ

It can be rewritten in the following form:

r� ¼ C� eff : ðe� � e�
p � e�

HÞ ð28Þ

where the effective elasticity moduli C� eff , effective

eigenstrain e�
H and effective plastic strain e�

p are

defined as

C� eff ¼ hð/ÞC� a þ hð/ÞC� b ð29Þ

e�
H ¼ C�

�1
eff : ðhð/ÞC� a : e�

H

a þ hð/ÞC� b : e�
H

b Þ ð30Þ

e�
p ¼ C�

�1
eff : ðhð/ÞC� a : e�

p
a þ hð/ÞC� b : e�

p
bÞ ð31Þ

which are the well-known Voigt effective properties.

Note that (30) and (31) differ from usual phase field

schemes as discussed in [4].

2.4.2 Plastic energy density

Considering the case of a two-phase elastoplastic

alloy, it is considered that energy can be stored due to

non-linear isotropic hardening and non-linear kine-

matic hardening in each phase. The hardening com-

ponents are modelled by means of internal variables

attributed to each phase. The set of internal variables

Vk, of scalar or tensorial nature, represents the state of

hardening of phase k: for instance, a scalar isotropic

hardening variable rk, and a tensorial kinematic

hardening variable a�k

Vk ¼ ra; rb; a� a; a� b

n o
ð32Þ

The associated thermodynamic driving forces are
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Ra ¼
ofpa

ora
; Rb ¼

ofpb

orb
; X� a ¼

ofpa

oa� a
; X� b ¼

ofpb

oa� b

ð33Þ

A simple quadratic potential is adopted for the plastic

part of the free energy density:

f p
a ¼

1

3
Haa� a : a� a þ

1

2
baQar2

a ;

f
p
b ¼

1

3
Hba� b : a� b þ

1

2
bbQbr2

b ð34Þ

thus assuming that each phase exhibits the same kind

of isotropic elastoplastic behaviour, which is a

simplification but not a real restriction in the approach.

These potentials are similar to the function (10) chosen

in the multiphase approach but different values of the

constant material parameters ba;b;Qa;b and Ha;b are

attributed to each phase. These parameters may

depend on the concentration c but they do not depend

on /. It follows from (34) and (33) that

Ra ¼ baQara; Rb ¼ bbQbrb ð35Þ

X� a ¼
2

3
Haa� a; X� b ¼

2

3
Hba� b ð36Þ

Still assuming that the elastoplastic behaviour of each

phase is treated independently, distinct yield functions

are introduced for both phases as

gaðra;X� a;RaÞ ¼ req
a � Ra � r0

a;

gbðrb;X� b;RbÞ ¼ req
b � Rb � r0

b

ð37Þ

The parameters r0
a;b represent the initial yield stress of

each phase. In the present work, a von Mises criterion

is adopted for both phases:

req
a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2
ðs� a � X� aÞ : ðs� a � X� aÞ

r
where

s� a ¼ r� a �
1

3
ðtrace r� aÞ1� ð38Þ

req
b ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2
ðs� b � X� bÞ : ðs� b � X� bÞ

r
where

s� b ¼ r� b �
1

3
ðtrace r� bÞ1� ð39Þ

where the deviatoric stress tensors s�a;b are introduced.

The plastic flow rules and the evolution equations

for the internal variables are the following:

ð40Þ

ð41Þ

_ra ¼ _ka 1� Ra

Qa

� �
; _rb ¼ _kb 1� Rb

Qb

� �
ð42Þ

_a� a ¼ _ka n� a �
3Ca

2Ck

X� a

� �
; _a� a ¼ _k a n� a �

3Ca

2Ck

X� a

� �

ð43Þ

As a result, two distinct plastic multipliers _ka;b are

required in the theory. They are determined indepen-

dently for each phase using the consistency condition

in rate-independent elastoplasticity.

3 Results

The two presented phase field approaches, namely the

interpolation and homogenisation models, have been

applied to study the mechanical effect on the diffu-

sion-controlled growth of a-precipitates embedded in

a supersaturated b-matrix phase. The particles and

matrix are separated by a coherent diffuse interface

endowed with the constitutive properties described in

the previous sections. The case of a single spherical

precipitate is considered first, before studying the

coalescence of a collection of initially circular

precipitates. Internal stresses are generated by the

transformation eigenstrains. To ease the interpretation

of the results, the a phase displays a purely elastic

behaviour whereas the b phase is assumed to be

elastic-perfectly plastic with a yield stress r0
b. Homo-

geneous isothermal isotropic mechanical behaviour is

considered for both phases.

3.1 Conditions of the finite element calculations

The previous models have been implemented into the

finite element code Z-set [44]. The variational formu-

lation corresponding to the field equations (1) and the

implicit resolution schemes based on a monolithic

framework are described in [3, 5].

All chemical and mechanical material data values

are dimensionless and scaled with the chemical free

energy curvature, which is chosen to be the same for
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both phases (ka = kb = k), a mesoscopic system

length r0, where r0 is the initial radius of the

precipitates, and the characteristic time s = M/k.

Identical chemical diffusivities Da,b are assumed in

the two phases. They are taken such that

D s=r2
0 ¼ 1� 10�4. The interfacial energy is isotropic,

c=ðkr0Þ ¼5� 10�3. The corresponding interface

thickness has been chosen to be about 0.5 % of the

total size of the system d/r0 = 0.25. The equilibrium

concentrations at incoherent state for both phases are

aa = 0.7 and ab = 0.3. Both phases possess the same

isotropic normalized elastic moduli, corresponding to

a Young modulus E=k ¼ 7� 1010 and a Poisson ratio

m= 0.3. For the sake of simplicity, the eigenstrains in

both phases are spherical tensors independent of

concentration. Taking the b phase as the stress free

reference state (e�b
H ¼ 0�), the eigenstrain in the a phase

is a spherical tensor

The normalized yield stress for the b phase is

r0
b=k ¼12.

Circular nuclei of a phase are introduced in the

b-matrix as initial conditions for the phase field /.

The initial condition for the concentration field is a

uniform equilibrium value of ca in the nuclei and

the precipitate grows under a matrix supersaturation

(c1b � cint
b ). Neglecting effects of interfacial curvature

and in complete absence of stress field, the interfacial

concentrations cint
a and cint

b correspond to the equilib-

rium concentrations for the specified phase obtained

from the phase diagram. A typical composition profile

is shown schematically in Fig. 2 for the single

precipitate studied in the next subsection.

The concentration field within the matrix is given in

[9], verifying the following interface/boundary con-

ditions for the composition field:

cb ¼ cint
b when x ¼ xþint

cb ¼ c1 when x!1
ð44Þ

c1b is the far-field matrix concentration, which is

assumed to be independent of time in the case of the

isolated precipitate.

3.2 Growth of a spherical precipitate

In this section, the case of an isolated misfitting

spherical precipitate in a supersaturated matrix is

chosen in order to compare the proposed phase field

mechanical models and examine the stored mechan-

ical energy effect on the interfacial compositions and

the diffusion-controlled growth. Interfacial conditions

for mechanical equilibrium in two-phase crystals

separated by a curved interface are deduced.

The geometry of the problem is that of two

concentric spheres, the central one delimiting the a
precipitate, the outer one corresponding to the outer

surface of the b matrix. The computation is made by

means of axisymmetric finite elements with a finite

element mesh corresponding to one sector

0� h� h0 ¼ 10�. The initial spherical nucleus has a

radius r0 whereas the outer boundary of the matrix is at

r = R. The finite element mesh is composed of linear

4-node axisymmetric quadrangular elements.

Profiles of / and c as tanh functions along one

direction have been set initially, which correspond to

coexistence of an initial misfitting spherical precipi-

tate of initial radius r0=R ¼ 0:02, and a b matrix of

outer radius R and separated by a curved diffuse

interface with a thickness roughly equal to d. Let us

call S the union of the surfaces r = R, h = 0 and

h = h0. The following boundary conditions have been

applied to the system:

n:n ¼ 0; J:n ¼ 0 on the surfaceS
rrrðr ¼ RÞ ¼ 0 free surface condition

uh ¼ 0 on the surfaceS
ð45Þ

Fig. 2 Schematic illustration of the composition profile at a

given time associated with the growth of an isolated coherent

precipitate into a supersaturated matrix. The matrix/precipitate

interface lies at r=rint ¼ 1; rint being the current position of the

interface.
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where n is the normal vector to the considered surface.

The generalized stress vector n ¼ Ar/ is defined in

[3, 22].

Figure 3 compares the stress distributions in a

misfitting spherical precipitate, obtained in the case of

ideal plastic deformation in the matrix according to the

interpolation and homogenisation methods. The radial

stress rrr and hoop stress rhh are normalized to the

yield stress and are plotted as functions of the radial

distance r divided by the outer radius R. These

distributions are illustrated at four different time

increments. The initial nucleus is shown by a white

strip. The brown domain corresponds to the grown part

of the a precipitate whereas the blue strip indicates the

zone of plastic activity in the matrix phase. The

domains are delimited by vertical dotted lines. The

plastic zone size can be seen to increase as the

precipitate grows. The hoop stress exhibits a steep

increase at the a - b interface, r = rint, which is the

phase field counterpart of the discontinuity expected in

the sharp interface model. The main feature of the

stress distributions is that stresses as predicted by the

interpolation and Voigt homogenisation almost coin-

cide in the b matrix and strongly differ inside the

precipitate. The homogenisation model predicts con-

stant stress values inside the inclusion, in contrast to

the strongly varying stress field provided by the

interpolation model.

This can be understood by looking at the distribu-

tion of the plastic strain components ep
rr; e

p
hh. Accord-

ing to the interpolation model, the plastic strain

components are obtained by integrating the flow rule

(16). In contrast, the plastic strain is defined by Eq.

(31) in the homogenisation model. When the a phase

starts growing, the stress level increases in the matrix

due to the eigenstrain of the particle. The von Mises

equivalent stress reaches the threshold value r0
b and

plasticity starts flowing in the blue domain around the

particle. As the particle continues growing, the

interface propagates through the plastic zone of the

matrix. As a result the a phase inherits (or not,

depending on the model) some plastic deformation

from the matrix phase. According to the interpolation

scheme, a unique variable e�
p is defined and is

therefore ‘‘transmitted’’ from one phase to the other.

This explains why residual plastic deformation is

observed within the a phase, even though it behaves

purely elastically, as illustrated by the top part of Fig.

4. The amount of plastic strain inherited by the a phase

from the matrix can be seen to increase when the

particle size increases.

In contrast, according to the homogenisation

model, the mixture rule (30) for the plastic strain in

the precipitate implies that plastic strain inherited from

the b matrix is progressively forgotten when /
asymptotically reaches the value 0. This explains

why the plastic strain value inherited from the matrix

is only visible in the diffuse interface region and in the

b phase, and steeply decreases when leaving the

interface in the a phase, as illustrated by the profiles in

the bottom part of Fig. 4.

The radial strain profiles are shown in Fig. 5

according to the interpolation and homogenisation

models. The latter predicts constant strain inside the

precipitate. The solutions of the two models are found

to be very close in the matrix. The difference in total

strain on both sides of the interfaces is responsible for

a difference in the so-called coherence energy Ecoh

defined as the elastic energy necessary to keep both

lattices coherent across the interface [5, 23]. Its

analytical expression and the evolution of the coher-

ence energy with time during growth is shown in the

upper right corner of Fig. 5.

The corresponding concentration profiles are given

in Fig. 6. They show slight differences found in the

precipitate according to the phase field model. They

remain very close to each other in the matrix phase.

The differences in elastic and coherence energies for

both models illustrated in the upper right corner of Fig.

6 lead to different jumps of concentrations on each

side of the interface in the form

cint
a;b ¼ aa;b þ ðE þ

c
R
Þ=ðkðaa � abÞÞ ð46Þ

where

E ¼ fe;a � fe;b � Ecoh; with

Ecoh ¼ r� b : ðe�
int
a � e�

int
b Þ ð47Þ

b Fig. 3 Normal rrr and tangential rhh stress distributions in a

radial direction from the center of the particle with both

interpolation and homogenisation methods, at four stages of the

growth process. Stresses are normalized with respect to the yield

stress r0
b. The matrix precipitate interface lies at r=rint ¼ 1. The

white, brown and blue colors respectively correspond to the

initial nucleus, grown a phase domain, and active plastic zone in

the matrix.
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In particular, cint
b is found to be slightly higher in the

interpolation model than in the homogenisation model

which induces a slightly less steep concentration

gradient in the matrix, as shown in Fig. 6.

In order to examine the effect of stored elastic energy

on the diffusional growth of a coherent spherical

precipitate into a supersaturated matrix, the time evolu-

tion of the precipitate radius, normalized by the matrix

radius rint=R, is shown in Fig. 7 for the two models. A

parabolic law describes the particle growth in both

cases but with two different kinetic constants. The

square of the precipitate radius increases linearly with

time De ¼ K
ffiffi
t
p

. The found values for the coefficient K

are: K ¼ 1:38� 10�9 ms-1 for the purely elastic

model, K ¼ 1:12� 10�9 ms-1 for the elastoplastic

homogenization model and K ¼ 10�9 ms-1 for the

Interpolation model

Voigt homogenisation model

Fig. 4 Plastic deformation

distribution in a spherical

precipitate embedded in a

concentric spherical matrix

as a function of the

normalized radial distance

r/R as computed at three

different time steps for the

interpolation model (top)

and for the Voigt

homogenisation model

(bottom).
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elastoplastic interpolation model. The reason for

such different kinetics stems from the difference in

stored elastic energy close to the interface induced

by different plastic strain values. As shown in [5]

for a dilatational misfit in the particle, plastic

deformation leads to a slowdown of the growth

kinetics compared to sole elasticity due to a

flattening of the concentration profile in the matrix

induced by relaxed stresses, as discussed before.

The strain jump at the interface shown in Fig. 5 is

higher according to the homogenisation model than

in the interpolation model which explains the faster

kinetics predicted by the former model. In other

words, the higher stored elastic energy obtained

with the homogenisation model leads to faster

kinetics.

Fig. 5 Total strain

distribution in a spherical

precipitate embedded in a

concentric spherical matrix

as a function of the

normalized radial distance

r/R as computed at

t = 0 hours for the

interpolation model (dotted

line) and for the Voigt

homogenisation model

(dark line).

Fig. 6 Composition profile

associated with the growth

of an isolated coherent

precipitate into a

supersaturated matrix,

according to the

interpolation (dotted line)

and homogenisation models

(dark line) at three distinct

time steps. The matrix/

precipitate interface lies at

r=rint ¼ 1 indicated by the

vertical dotted line.
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3.3 Microstructural evolution coupled to plastic

activity

The phase field simulation of Ostwald ripening of a

population of a precipitates embedded in a b-matrix is

considered in this section, including the impact of

elastoplastic deformation on the process. Ostwald

ripening is a process related to the coarsening of one

phase dispersed in a matrix phase. It is generally the

last stage of a first-order phase transition in a two-

phase region. The first stage is nucleation when a new

phase forms from the mother phase, maintained in a

supersaturated state. As the supersaturation decreases

due to particle growth, the nucleation barrier and the

stable cluster size increase. The system usually forms

a microstructure with particles in a matrix. Even after

full exhaustion of the driving force, the particles in the

matrix are not in thermodynamic equilibrium. The

system can further decrease its total free energy by

decreasing the overall interface area between the

particles and the matrix. The decrease of total interface

area progresses by a process where the large particles

grow at the expense of the smaller particles. The

average size of the particles of the dispersed phase

increases during coarsening due to diffusion through

the matrix phase, and their total number decreases.

A square area has been meshed with 250 9 250

linear quadrangular elements. Several solid particles

(/ = 1) of different shapes and radii were randomly

distributed in the matrix (/ = 0). The initial solute

compositions of both phases are homogeneous and set

to be equal to c0 = 0.5. The simulations are performed

under plane strain conditions. Periodic boundary

conditions are applied to the concentration and phase

fields. Periodicity is also enforced to the mechanical

variables ensuring here a vanishing mean stress, by

means of a special finite element described in [8].

The simulated results for the Ostwald-ripening

process are shown in Fig. 8 and 9, for the interpolation

and homogenisation models respectively. In each

case, the top figures illustrate the coarsening of the

particles, i.e. the growth and coalescence of some

particles and the disappearance of other ones. In both

simulations, only two particles remain after 5 h. The

kinetics is slightly faster for the homogenization than

for the interpolation model.

The simulations also provide the field of cumulative

plastic strain p defined as:

ð48Þ

at different time steps, see the bottom images of Figs. 8

and 9. At the final stage, the homogenisation model

predicts very limited zones of residual plastic strain

due to the sweeping of plastic strain by the interface. In

contrast a complex field of plastic deformation is

found to pertain according to the interpolation model.

Fig. 7 Growth kinetics of a

misfitting spherical

precipitate in an isotropic

infinite matrix. Two finite

element calculations have

been performed according to

the interpolation and

homogenisation models.
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Fig. 8 Time history of

Ostwald ripening process in

the case of total inheritance

between the new elastic

formed phase and the parent

plastic phase (interpolation

model): phase field and field

of cumulative plastic strain

at the time steps t = 0, 1.7,

2.5, 5 h. The black lines in

the bottom part denote the

/ = 0.5 iso-lines.
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Fig. 9 Time history of

Ostwald ripening process in

the absence of inheritance

between the new elastic

formed phase and the parent

plastic phase

(homogenisation model):

phase field and field of

cumulative plastic strain at

the time steps t = 0, 0.25, 1,

5 h.
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As a result, the material swept by the phase transfor-

mation front is full of residual stresses. Residual

stresses are much more limited for the homogenisation

model. In particular, when the a phase will have spread

over the whole domain, it is expected that the

interpolation model will predict residual plastic strains

and stresses inside the domain whereas the homoge-

nisation will predict a new virgin state in the domain.

This represents a major difference between both

approaches. The relevance of both situations to the

physical reality could be investigated by means of

residual stress or strain field measurements with

sufficient accuracy.

4 Conclusion

Recent advances in phase field modeling involve the

nonlinear mechanical behaviour of materials during

phase transformation. Two main classes of such

models have been distinguished, namely the interpo-

lation models relying on a single set of constitutive

equations and interpolation of material parameters,

and the homogenisation models that are based on the

mixture of free energy and dissipation potentials

associated with distinct behaviours of the phases. The

two model classes have been shown to exhibit

opposite behaviour regarding the question of inheri-

tance of plastic deformation during phase transforma-

tion. As a rule, according to interpolation models, the

plastic strain that occurred in the mother phase due to

prior straining or induced by the local stresses arising

at the vicinity of the interface, was shown to be

inherited by the new phase after the passing of the

interface. This means that the new reference state for

computing elastic stresses is that of the parent phase.

In contrast, according to homogenisation models,

fading memory of plastic strain is observed due to the

fact that the plastic strain tensor is expressed as an

explicit weighted function of the plastic strain tensors

attributed to each phase at each material point. This

distinct behaviour of each model class has been shown

to result in different residual plastic strain and stress

fields after transformation. Residual stresses are

minimized when using homogenisation models. Inter-

polation models lead to a non-vanishing residual

plastic strain field, even after complete phase trans-

formation. This residual plastic strain field reflects the

history of growth and coalescence of precipitates

embedded in an elastoplastic matrix.

Finite element simulation results were given in the

case of a misfitting elastic precipitate phase growing

within an elastoplastic von Mises matrix. A slowdown

of transformation kinetics due to plasticity compared

to purely elastic behaviour was observed and related to

the strain relaxation induced by plasticity close to the

interface [5]. The homogenisation was shown to lead

to a slightly faster kinetics than the interpolation

models due to the fact that the inheritance of plastic

deformation in the latter model allows for higher strain

relaxation. This slowdown in the growth kinetics does

not reflect the pipe diffusion effects induced by

dislocations which would rather lead to significant

acceleration of the kinetics in alloys. Pipe diffusion

effects could be introduced in the modelling by means

of a dependence of diffusion coefficients on disloca-

tion density. Although only two-dimensional axisym-

metric or plane strain simulations were provided in

this work, the fundamental difference in the resulting

inheritance behaviour of the two classes of models

remains in the 3D case, because it lies in the

mathematical formulation of the models. The axisym-

metric example already addresses spherical precipitate

shape but random distributions of growing second

phase in an elastoplastic matrix must be considered in

the future.

It is anticipated that the actual behaviour of

engineering materials lies between that of total

inheritance of plastic deformation and no inheritance

at all. It will therefore be necessary to develop phase

field models combining features of both model classes

investigated in this work and leading to the possibility

of partial inheritance.

Hardening laws were formulated in the constitutive

models but not used in the simulation because the

existence of hardening raises the question of inheri-

tance of dislocation microstructures after the passing

of an interface, which is a different question from that

of the inheritance of plastic deformation. The latter

solely represents a change in the reference local

configuration for the computation of elastic stresses.

The question of inheritance of hardening microstruc-

tures will be the subject of future work both in the case

of the phenomenological constitutive equations pre-

sented in the present work and for phase field

dislocation models proposed in [19]. Also, rate-

independent plasticity only was considered in the
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present work to avoid mixing too many phenomena in

the discussion. The presented model formulations are

general and include viscoplastic behaviour that is

more realistic for diffusional phase tranformation and

will be used in the future.

The question of inheritance of plastic strain gradi-

ents, i.e. accumulation of geometrically necessary

dislocations close to boundaries could also be mod-

elled within a coupled phase field/strain gradient

plasticity approach as proposed in [11].
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