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A phase field model accounting for plasticity has been developed using an
homogenization scheme for interpolating the constitutive laws within the
diffuse interface. The influence of plasticity on the growth of a misfitting
spherical precipitate, controlled by solute diffusion has been investigated:
plasticity in the matrix slows down the transformation. Moreover, an
excellent agreement with the corresponding analytical sharp interface
solutions has been achieved.

Keywords: phase field; diffusional transformation; elasto-plasticity;
homogenization

In crystalline solids, diffusional phase transformations are often accompanied by
deformations induced by changes in crystalline structures [1]. The stresses arising
from the transformation strain can have a significant influence on equilibria
(equilibrium compositions and volume fractions of the coexisting phases), as well as
on the processes (nucleation, growth and coarsening) selecting the final morphology
and spatial distribution. Modeling the interaction between mechanics and phase
transformation not only gives fundamental insight into the formation of
microstructures, but also provides the opportunity to engineer new microstructures
with salient features for novel applications. The main difficulty of such a task is
common to many free boundary problems: it lies in the tight coupling between the
interface evolution and the fields. It becomes even more complicated when complex
mechanical material behavior, ranging from heterogeneous elasticity to general
elastoviscoplasticity, is involved.

The phase field method is particularly well-suited to address this issue. The
introduction of elasticity in the phase field approach, initiated by Khachaturyan [1],
has succeeded in predicting complex microstructure evolutions driven by the
interplay of diffusion and elasticity [2,3]. It is only very recently that some phase
field models have been enriched with nonlinear mechanical behavior, extending
the range of applications and materials which can be handled by this approach
(e.g. [4,5]).
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In this work, the general formulation including plasticity into phase field, based

on homogenization schemes, and recently proposed in [5], is used to study the effect

of plastic accommodation on the diffusion-controlled growth of an elastic spherical

misfitting precipitate into a infinite supersaturated elastoplastic matrix.
We start with the total Ginzburg–Landau free energy, expressed as the sum of

four contributions, which is assumed to depend on the order parameter � and its

gradient, the concentration c, the elastic strain "
�

e and the set of internal variables A

associated to material hardening:

Fð�,r�, c, "
�

e,AÞ ¼

Z
V

fch þ fe þ fp þ
�2

2
jr�j2

� �
dv, ð1Þ

where fch, fe and fp are, respectively, the chemical, elastic and plastic free energy

densities, and where the gradient square of the phase field variable � accounts for the

interface energy. Considering a two-phase binary alloy, fch has two local minima

corresponding to the two phases. It is obtained by a double well potential in � added

to a mixture of the bulk free energies of both phases f� and f�, convex w.r.t. � [6]:

fchð�, cÞ ¼ hð�Þ f�ðcÞ þ hð�Þ f�ðcÞ þWgð�Þ, ð2Þ

where h(�)¼�2(3� 2�), hð�Þ ¼ 1� hð�Þ, g(�)¼�2(1��)2, the subscripts � and �
indicate the two coexisting phases and the densities f� and f� are chosen to be

quadratic functions of the concentration only:

f�ðcÞ ¼
1

2
k�ðc� a�Þ

2 and f�ðcÞ ¼
1

2
k�ðc� a�Þ

2: ð3Þ

k�, k� are the free energy curvatures w.r.t. concentration (assumed to be equal in the

present study k�¼ k�¼ k). a� and a� are the equilibrium concentrations for � and �
phases, respectively [7].

The second term fe in (1) accounts for energy contributions due to elastic effects.

The effective elastic energy is expressed in terms of the elastic energies of both phases

weighted by the complementary functions h(�) and hð�Þ. Taking a quadratic function
of elastic strain tensor for fe�, fe�, the elastic energy is defined on the basis of the

properties and variables related to the different phases: the total strains ð"
�
�, "
�
�Þ, the

eigenstrains ð"
�

?
�, "�

?
�Þ, the plastic strain tensors ð"

�

p
�, "�

p
�Þ and the fourth-order tensor of

elasticity moduli ðC
�
�,C
�
�Þ :

fe ¼ hð�Þ fe� þ hð�Þ fe�

¼
1

2
hð�Þ "

�

e
� : C
�
� : "
�

e
� þ

1

2
h ð�Þ "

�

e
� : C
�
� : "
�

e
�, ð4Þ

where "
�

e
 ¼ "� � "�

?
 � "�

p
 ( stands for � or �).

Based on Voigt/Taylor model assumptions in homogenization theory, we assume

that "
�
¼ "
�
� ¼ "

�
� at each material point inside the diffuse interface region separating

the elastoplastically inhomogeneous phases. The local effective stress is expressed in

terms of the local stresses with respect to both phases. Taking Hooke’s law into
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account for each phase, the stress of heterogeneous materials is given as

�
�
ðx , tÞ ¼ hð�Þ r

�
�ðx , tÞ þ hð�Þ r

�
�ðx , tÞ

¼ hð�ÞC
�
� : "
�

e
� þ hð�ÞC

�
� : "
�

e
�: ð5Þ

Then, it follows that the overall strain–stress relationship obeys Hooke’s law:

r
�
¼ C
�
eff : ð"

�
� "
�

p � "
�

?Þ, ð6Þ

where the local effective elasticity moduli C
�
eff, eigenstrain "

�

? and plastic strain "
�

p

vary continuously between their respective values in each phase:

C
�
eff ¼ hð�ÞC

�
� þ hð�ÞC

�
� ð7Þ

"
�

? ¼ C
�

�1
eff : ðhð�ÞC

�
� : "
�

?
� þ hð�ÞC

�
� : "
�

?
�Þ ð8Þ

"
�

p ¼ C
�

�1
eff : ðhð�ÞC

�
� : "
�

p
� þ hð�ÞC

�
� : "
�

p
�Þ: ð9Þ

Note that (8) and (9) differ from usual phase field schemes as discussed in [5]. Indeed,

using homogenization schemes, the eigenstrain (8) and the plastic strain (9) are no

longer the average of the local properties of both phases, contrary to the standard

approach where properties follow some kind of mixture laws. The advantage of our

approach makes possible to mix different types of constitutive equations for each

phase, e.g. hyperelastic nonlinear behavior for one phase and conventional

elastic–plastic model with internal variables for the other one.
A third contribution fp due to hardening effects in each phase can be added to the

free energy density. In this work, hardening is not considered, and isotropic von

Mises rate independent plasticity without hardening is used for the � phase [8].

The corresponding yield function is

gðr
�
�Þ ¼ J2ðr

�
�Þ � �

0
� and J2ðr

�
�Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2
s
�
� : s
�
�

r
, ð10Þ

where J2ðr
�
�Þ is the von Mises equivalent stress, s

�
� is the deviatoric stress and �

0
� is the

yield stress in the � phase.
The main differences among the phase-field models lie in the treatment of the

various contributions to the total free energy. Once the total free energy is defined,

the governing equations of the fields are described by the time-dependent kinetic

equations, which are the Ginzburg–Landau equation for the non-conserved order

parameter �(x, t), the mass balance for the conserved concentration field c(x, t) and

the static equilibrium for the stress tensor �
�
ðx, tÞ in the absence of volume forces:

�
1

M
_�þ �2D��

@fch
@�
�
@fe
@�
�
@fp
@�
¼ 0

_cþ J: �Lð�Þ J
@fch
@c
þ J

@fe
@c
þ J

@fp
@c

� �� �
¼ 0

J:r
�
¼ 0,

ð11Þ
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where M is the phase field mobility and L(�) the Onsager coefficient, defined with

respect to the chemical diffusivities D� and D� in both phases by means of the

complementary functions h(�) and hð�Þ [7]:

Lð�Þ ¼ hð�ÞD�=k� þ hð�ÞD�=k�: ð12Þ

In order to illustrate some non-trivial effects of plasticity on the kinetics of

diffusional phase transformation, we have investigated the growth of an elastic

spherical precipitate of radius rint into a spherical supersaturated elastoplastic matrix

of radius R. Indeed, exact analytical solutions (recalled here for self-consistency) for

the strain/stress fields are given in [9] for infinite matrix R!1. Assume that the

eigenstrains are spherical tensors independent of concentration, and choose � as the

stress free reference state "
�

?
� ¼ 0

�
and "

�

?
� ¼ "

? I
�
, where I

�
is the identity second order

tensor. If both phases are considered to behave in a purely elastic state, the analytical

solution for isotropic elasticity is given in spherical coordinates as

�rr ¼ �jj ¼ �pe r � rint

�rr ¼ �2�jj ¼ �pe
rint
r

� �3
r � rint

(
, ð13Þ

where jj stands for �� and ’’, and pe¼ 2E/[3(1� �)]"?. If the matrix behavior is

isotropic elasto-plastic, the analytical solutions for the strain/stress fields involve the

size of the plastic zone, as given in [9]:

�rr ¼ �jj ¼ �p r � rint

�rr ¼ �jj � �
0
� ¼ �pþ 2�0� log

r

rint

� �
rint � r � rp

�rr ¼ �2�jj ¼ �2=3 �
0
�

rp
r

� �3
r � rp,

8>>><
>>>:

ð14Þ

where rp ¼ rint 3pe=ð2�
0
�Þ

h i1=3
is the interface between the elastic zone and the

elastoplastic zone inside the matrix, and p ¼ �½2�0� logðrp=rintÞ þ 2�0�=3�. These

analytical results, classical in the mechanical context and based on a perfect sharp

interface without surface energy, can be compared to the results of the proposed

phase field model where the interface is diffuse. The data used in the calculations are

summarized in Table 1: the Young’s modulus E, Poisson ratio � and chemical

diffusivity D are assumed to be the same in both phases. The interfacial energy and

thickness are denoted, respectively, by 	 and 
. All parameters are dimensionless and

scaled with the chemical free energies curvature k, a mesoscopic length (typically size

R) and the characteristic time �¼ �/k related to interface motion.

Table 1. Data used in the calculations.

E/k � "? �0�=k 	/(kR) 
/R D�/R2 a� a�

7� 1010 0.3 3� 10�4 12.5 5� 10�3 10�3 0.1 0.7 0.3
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The finite element method has been used to solve the problem, with a mesh

composed of quadratic eight-nodes quadrangular elements. The following free

surface boundary conditions have been applied at r¼R:

J� 	 n ¼ 0, Jc 	 n ¼ 0 and �rr ¼ 0: ð15Þ

Initially, we have imposed �¼ [1� tanh(2r0/
)]/2 and c¼ a�þ (a�� a�)[1�

tanh(2r0/
)]/2, with r0 ¼ r� r0, corresponding to an inner spherical � precipitate

with radius r0 embedded into the � matrix shell with outer radius R
 r0. Moreover,

we have set 
/r0¼ 0.1 so as to avoid spurious effects associated with large interface

thickness.
First, we compare in Figure 1 the profiles of the stress components �rr and ���

generated by the misfitting precipitate, at a given time, when the matrix is either

purely elastic (dashed lines), or ideal plastic (continuous lines). The components are

normalized by the yield stress �0�, and the space coordinate r by the precipitate radius

rint. The precipitate/matrix interface is localized by the first vertical dotted line at

r/rint¼ 1 and the plastic zone radius by the second one. Calculations with the phase

field are plotted with lines, and compared with the analytical solutions with symbols.

The well-known result [10] that the stress within the precipitate is uniform and

hydrostatic is recovered.
Differences between the elastic and ideal plastic cases are significant only within

the precipitate and in the plastic zone. The hydrostatic stress in the inclusion is

indeed smaller in the plastic case, as expected. Inside the plastic zone, the tangential

stress ��� with plasticity differs fundamentally from its elastic counterpart: the latter

–

–

–

Figure 1. Profiles of normal �rr and tangential ��� stress components for matrices with purely
elastic and ideal plastic behaviors, compared for the same value of rint. Relative interface
thickness is 
/rint¼ 0.014.
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decreases with r from a maximum positive value at the interface whereas the former
increases from a negative value at the interface to a positive maximum value at rp.

Hence, The slope of ��� experiences a discontinuity at rp due to the discontinuity in
the slope of the stress–strain curve at the yield point. A very good agreement is
achieved between our calculations and the analytical solutions for a sufficiently thin

interface.
The evolution of ��� during growth is plotted in Figure 2, in the plastic case. The

stress remains hydrostatic and constant within the precipitate as long as the free
external boundaries do not interact with the stress field, similarly to what is predicted
by the Eshelby inclusion model in the pure elastic case. Moreover, the values of ���
bounding the plastic zone exhibit only slight changes during growth whereas the
plastic zone extends quite significantly. As shown in Figure 2, our calculations agree
very well with the analytical solution all along the growth.

The influence of plasticity on the growth kinetics is shown in Figure 3, where the
precipitate radius (normalized by the initial one r0) is plotted versus time for three

cases: chemical, elastic and ideal plastic. Concentration profiles for the three cases
are plotted in the inset for the same time, showing that the growth is controlled by
diffusion in the matrix.

After transients, short with respect to the total time (5104 s), the growth laws are
all parabolic, i.e. rint ¼ K

ffiffi
t
p

. The chemical case (black) is the fastest, when the plastic

one is the slowest, quite unexpectedly. In order to understand these trends, we have
compared our results with the analytical solutions of the sharp interface model
proposed by Zener [11]. This model relies on solving Fick’s equation in an infinite

–

–

Figure 2. Profiles of ��� versus time: phase field (continuous lines) and analytical solution
(Equation (14)) (open symbols). Interface and plastic radius are located by vertical dashed
lines.
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supersaturated matrix surrounding a growing stoichiometric spherical precipitate.

Assuming that the concentrations at the interface remain constant (e.g. given by the

phase diagram at constant temperature), the solute balance gives the growth constant

K as the solution of the following relation:

2 Pe expðPeÞ expð�PeÞ �
ffiffiffiffiffiffiffiffi
�Pe
p

erfcð
ffiffiffiffiffi
Pe
p
Þ

h i
¼ �, ð16Þ

where � ¼ ðc� � c0�Þ=ðc� � c�Þ is the matrix supersaturation depending on the

interfacial concentrations c�, c� and the matrix concentration c0� far away from the

interface; Pe¼K2/(4D) is the Péclet number involving the solute diffusivity D.

The interfacial concentrations c� and c� depend on local stresses and strains

according to the thermodynamics of stressed crystalline solids (e.g. [12]). Assuming

that equal free energy curvatures k�¼ k�¼ k, we obtain

c�,� ¼ a�,� þ E þ 	ð Þ=ðkDaÞ, ð17Þ

E ¼ Dfe � Ecoh ¼ Dfe � r
�
� : D"

�
, ð18Þ

where D ¼ �� � denotes the jump of any value  (a, fe or "
�
) across the interface,

 is the interface mean curvature and 	 its energy. The term E accounting for

mechanics is composed of two contributions: the jump Dfe of elastic energy density

Figure 3. Growth kinetics of a misfitting spherical precipitate: chemical (dots), elastic
(squares) and ideal plastic (triangles). Phase field with symbols and analytical solution with
lines.
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across the interface, and Ecoh which represents the elastic energy necessary to keep
both lattices coherent across the interface [12]. It must be emphasized that Ecoh
involves the jump of total deformations. Using the solution equations (13) and (14),
we have E ¼Ee¼E�("

?)2/(1� ��) in the purely elastic case. In the ideal plastic case,
our analytical computations give Ep¼ 1.37 Ee for the parameters of Table 1.
According to the above equations, a dilatational misfit in the precipitate raises the
interfacial concentrations in both phases due to the positive jump E: consequently,
the concentration gradient in the matrix decreases at the interface, as illustrated in
the inset of Figure 3, and so does the supersaturation � in Equation (16). This leads
to smaller K and slower growth kinetics as compared to the chemical case. Moreover,
the plastic relaxation around the precipitate induces jumps of total strains larger than
in the elastic case due to "

�

p
�: jEcohj increases and Ep4Ee. Consequently, the

concentration profile in the � matrix flattens with plasticity, and the growth slows
down. It is worth noting that our calculations are in excellent agreement with the
analytical solutions, as shown in Figure 3. This puts our model on a firmer footing
for investigating more complex configurations and morphologies.

In the present study, misfits, elastic constants and yield stresses have been
assumed not to depend on the concentration. Therefore, there is no contribution of
elasticity and plasticity in the diffusion equation (11)b, because @ fe/@c¼ @ fp/@c¼ 0.
Unfortunately, it is not trivial to qualitatively assess what role would those terms
play because they can contribute both in the bulk and at the interface. Further
calculations are thus necessary for clarifying their influence on growth.

Finally, it is worth mentioning that very thin interfaces have been considered in
this work for accurately recovering the stress fields predicted by the sharp interface
solutions. This would be very penalizing from a computational point of view for
dealing with 2D or 3D microstructures. Hence, it seems necessary to investigate the
influence of the ratio 
/rint on the results in future work.

In summary, we have developed a phase field model accounting for plasticity
using an homogenization scheme for interpolating the constitutive laws within the
diffuse interface. This framework allows combining very different constitutive laws
with great flexibility. We have investigated the influence of plasticity on the growth
of a misfitting spherical precipitate, controlled by solute diffusion. Quite
unexpectedly, the growth rate decreases when the stresses in the matrix are relaxed
by plasticity. Note that this behavior differs for the case of plane interfaces [13].
This trend has been analyzed and confirmed by comparing our results with analytical
solutions of the corresponding problem.
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