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Introduction
Why is it important to know how to implement
material constitutive equations in FE codes ?

• Few constitutive equations are avaliable in commercial codes

• Implement new constitutive equations in FE codes (ABAQUS, ANSYS, MARC, . . . ,
ASTER, CAST3M, . . . , Zébulon, WARP3D)

• Understand convergence problems
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Outline
• Definition of a constitutive equation (FE code point of view)

• Numerical integation methods (explicites/implicites)

• Consistent tangent matrix

• Particular case : von Mises material

• Convergence
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Definition of a constitutive equation

• For a displacement based FE formulation, nodal displacements are assumed to be
known and therefore the deformations

• The constitutive equation must then supply: (i) stresses σ
∼

and (ii) the consistent
tangent matrix L

∼

∼

= ∂∆σ
∼

/∂∆ε
∼

for a given strain increment ∆ε
∼

.

• Complex constitutive equations are characterized by internal state variables [A]: the
constitutive equation must provide an update of these variables consistent with the
strain and time increment.
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Role of the constitutive equation in the FEM

[U ] (t0) known

tim
e

in
cr

em
en

t[
t 0

,t
1
]

iteration i
∆ [U ]i

evaluate
ε
∼

(t1), ∆ε
∼

for each element

obtain
σ
∼

(t1),

L
∼

∼

=
∂∆σ

∼

∼

∂∆ε
∼

∼

for each element

compute
[F ] using σ

∼

(t1)
[K] using L

∼

∼

evaluate [R]
is [R] small enough
?

compute
δ∆ [U ] using
[R] and [K]

i=i+1

no

yes next increment
box : global computation

box : local time integration of the constitutive equations
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Generic interface behavior/FEM

• ∆t = t1 − t0

INPUT OUTPUT

[A] (t0)

ε
∼

(t1)

∆ε
∼

[A] (t1)

σ
∼

(t1)

L
∼

∼

material behavior
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Quantities characterising the material behavior
• Integrated variables/State variables (Vint)

• Auxiliary variables (Vaux)

• External parameters (EP)

• Coefficients (CO)
CO = CO(EP,Vint,Vaux)

• Interface: input variable (primal), associated dual variable (dual), tangent matrix
∂∆dual/∂∆primal.

ELEMENT −→
∆primal, primalt+∆t

Vint
t, dualt

−→

COMPORTEMENT

←−
dualt+∆t,Vint

t+∆t

∂∆dual/∂∆primal
←−
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Examples of primal—dual couples

problème primal dual

mechanics (small

deformation)

ε
∼

σ
∼

mechanics (finite strain) F
∼

σ
∼

ou S
∼

thermal problem (T, gradT ) (H,q)
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Constitutive equations as a differential equation

d [A]

dt
= ˙[A] = [G] ([A] , t)

Ai

dt
= ˙[A]i = Gi(A1, . . . , An, t)

• Time (t) represents the imposed deformation but also an external parameter such as
the temperature (T (~x, t)).

• The FE evaluation of the Constitutive equation for (∆ε
∼

, ∆) corresponds to the
integration of the previous equation from t0 to t1.

• In most cases: [A] = (ε
∼

e, . . . ) so that σ
∼

(t1) = E
∼

(t1) : ε
∼

e(t1),

• L
∼

∼

must be computed . . .
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Integration methods of Constitutive equations

Euler explicit method

[A] (t1) = [A] (t0) + ˙[A] ([A] (t0), t0) ∆t = [A] (t0) + [G] ([A] (t0), t0)∆t

• The method is not stable and should be avoided

• Explicit : bacause ˙[A] is computed at t0 for the known couple ([A] (t0), t0)
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Runge–Kutta explicit method

• Numerical estimation of the derivatives of ˙[A] (i.e. d2 [F ]A /dt2, d3 [F ]A /dt3,. . . )

• Error estimation to control the solution

The Runge–Kutta Integration method is easy to implement because it only uses the
differential equation ˙[A] = [G] ([A] , t). It however has some drawbacks:

• Integration may require a large CPU time

• In the case of plastic materials, it is mandatory to compute the plastic multiplier
which can be a difficult task (see below) in the case of temperature dependant
material coefficients.
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Runge–Kutta Method

Using a Taylor expansion, one gets for a time increment [t, t + ∆t] (which can differ
from the FE time step [t0, t1]:

{v} (t + ∆t) = {v} (t) + {v̇} (t)∆t + O(∆t2)

The accuracy of the Euler integration is therefore of magnitude O(∆t2). Based on this
first estimation of the increment, an other one can be performed using the mid-point (i.e.
t + ∆t/2). Let:

{δv1} = ∆t {v̇} (t)

and

{δv2} = ∆t {v̇}
(

t +
∆t

2
, {v} (t) +

1

2
{δv1}

)

= ∆t

(

{v̇} (t) +
∆t

2
{v̈} (t)

)

= {δv1}+
∆t2

2
{v̈} (t)
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This provides one way to estimate {v̈} (t). The second order Taylor expansion is:

{v} (t + ∆t) = {v} (t) + {v̇} (t)∆t + {v̈} (t)∆t2

2
+ O(∆t3)

which can be simplified using the previous estimate of {v̈} (t):

{v} (t + ∆t) = {v} (t) + {δv2}+ O(∆t3)

The precision has been improved (O(∆t3) instead of O(∆t2)). This is a second order
method.
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The procedure can be generalized. This leads to a 4th order Runge–Kutta method which
is written as:

{δv1} = ∆t {v̇} (t, {v})

{δv2} = ∆t {v̇}
(

t +
∆t

2
, {v}+

1

2
{δv1}

)

{δv3} = ∆t {v̇}
(

t +
∆t

2
, {v}+

1

2
{δv2}

)

{δv4} = ∆t {v̇} (t + ∆t, {v}+ {δv3})

{v} (t + ∆t) = {v} (t) +
1

6
{δv1}+

1

3
{δv2}+

1

3
{δv3}+

1

6
{δv4}+ O(∆t5)
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Runge–Kutta Method : error control

Aim: Obtain a given precision while minimize the computational effort

Make large time steps when the {v̇} function varies little and smaller time steps if its
evolution is rapid.

Let ∆t be the time increment over whivh the itegration has to be performed. It can be
divided into n sub-steps so that:

∆t =
∑

k

δtk

The error is estimated be applying the RK4 method

one time step δt → {v1}
two time steps δt/2 → {v2}

This corresponds to 11 evalutions of {v̇}.
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Let {v} (t + δt) be the exact solution; one gets

{v} (t + δt) = {v1}+ (δt)5 {φ}+ O(δt6)

{v} (t + δt) = {v2}+ 2(δt/2)5 {φ}+ O(δt6)

{φ} ≈ constant ≈ 1

5!

{

v(5)
}

The difference between both estimations is an indicator the error:

{E} = {v2} − {v1}

This difference has to be kept smaller that a prescribed precision by adjusting δt. This
equation can be solved neglecting O(δt6) terms:

{v} (t + δt) = {v2}+
1

15
{E}+ O(δt6)

This is a better estimation (5th order).
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{E} can then be used to modify the time step. Let
{

E0
}

by the requested precision (note
that the precision is a vector).

if Ei < E0
i , ∀i

The time step can be increased
if ∃i, Ei > E0

i

The time step must be decreased

The time step is corrected by the following factor:

α = min
i

∣

∣

∣

∣

E0
i

Ei

∣

∣

∣

∣

0.2

as the error varies as δt5 for the 4th order Runge–Kutta method.
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{

E0
}

must now be chosen.

The required precision must be obtained over the whole time increment ∆t and not only
on local sub steps δtk. In that case the error is best defined as:

E0
i = εδt

∣

∣

∣

∣

dvi

dt

∣

∣

∣

∣

= ε |δvi|

Integration methods 18



Implicite methods (or θ-methods)

• Evaluate ˙[A] at tθ between t0 et t1

• tθ = t0 + θ∆t with 0 ≤ θ ≤ 1

• Two solutions :

∆ [A] = [G] ([A] (t0) + θ∆ [A] , t0 + θ∆t)∆t

= [G] ([A]θ , tθ)∆t

∆ [A] = [(1− θ) [G] ([A] (t0), t0) + θ [G] ([A] (t1), t1)] ∆t

= [(1− θ) [G] ([A]0 , t0) + θ [G] ([A]0 + ∆ [A] , t0 + ∆t)] ∆t

• Implicit : ∆ [A] appears on both left and right handsides of the previous equations

• Integrate the constitutive equation = solve the implicit equations

• θ = 0→ Euler

• . . . in the following the first method will only be considered
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• Solution obtained by the Newton-Raphson method

• Write a residual vector

[R] (∆ [A]) = ∆ [A]− [G] ([A] (t0) + θ∆ [A] , t0 + θ∆t)∆t

Ri(∆A1, . . . , ∆An) = ∆Ai −Gi(A1(t0) + θ∆A1, . . . , An(t0) + θ∆An)∆t

• 1st order Taylor expansion around an estimation ∆ [A]s:

[R] = [R] (∆ [A]s) +
∂ [R]

∂∆ [A]
.(∆ [A]−∆ [A]s) = [0]

• Construction of the next estimation:

∆ [A]s+1 = ∆ [A]s −
(

∂ [R]

∂∆ [A]

)

−1

∆[A]=∆[A]
s

. [R] (∆ [A]s)

• [J ] = ∂ [R] /∂∆ [A] (Jij = ∂Rj/∂Aj): Jacobian matrix , [J ]
?

= [J ]
−1
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Note

• The internal variable vector [A] often contains 2nd order tensors

• The Voigt notation is used.

ε
∼

=



























ε11

ε22

ε33

2ε12

2ε23

2ε31



























, σ
∼

=



























σ11

σ22

σ33

σ12

σ23

σ31



























x
∼

=



























x11

x22

x33√
2x12√
2x23√
2x31


























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Integration — Simple Example : von Mises plasticity

• Additive Decomposition of deformations :

ε
∼

= ε
∼

e + ε
∼

p

• Flow surface
φ = σeq −R(p)

• Normality

ε̇
∼

p = ṗ
∂φ

∂σ
∼

=
3

2
ṗ

s
∼

σeq
= ṗn

∼

• Internal variables : (ε
∼

e, p)
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• ṗ is computed using the consitency condition: φ̇ = 0

φ̇ =
∂φ

∂σ
∼

: σ̇
∼

+
∂φ

∂p
ṗ = n

∼

: σ̇
∼

−Hṗ

• avec σ
∼

= E
∼

∼

: ε
∼

e = E
∼

∼

: (ε
∼

− ε
∼

p)→ σ̇
∼

= E
∼

∼

: ε̇
∼

e = E
∼

∼

: (ε̇
∼

− ε̇
∼

p)

• so that:

ṗ =
n
∼

: E
∼

∼

: ε̇
∼

n
∼

: E
∼

∼

: n
∼

+ H
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• Differential equations to be integrated:

sur ε
∼

e ε̇
∼

e = ε̇
∼

− ṗn
∼

sur p ṗ =
n
∼

: E
∼

∼

: ε̇
∼

n
∼

: E
∼

∼

: n
∼

+ H

• Pay attention to the dependance on external parameters (temperature. . . )

• Ready for the Runge–Kutta integration

Integration : von Mises 24



von Mises plasticity : implicit integration

ε̇
∼

e = ε̇
∼

− ṗn
∼

→ ∆ε
∼

e = ∆ε−∆pn
∼

ṗ =
n
∼

: E
∼

∼

: ε̇
∼

n
∼

: E
∼

∼

: n
∼

+ H
→ ∆p =

n
∼

: E
∼

∼

: ∆ε

n
∼

: E
∼

∼

: n
∼

+ H

• Evaluation of n
∼

, E
∼

∼

, H ? . . . at time tθ = t0 + θ∆t.

• Application :

n
∼

=
3

2

s
∼

θ

σθ
eq

avec σ
∼

θ = E
∼

∼

θ : ε
∼

θ
e ε

∼

θ
e = ε

∼

0
e + θ∆ε

∼
e

E
∼

∼

θ = E
∼

∼

(T θ) = E
∼

∼

(T 0 + θ∆T )

Hθ = H(pθ) = H(p0 + θ∆p)
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• The equation

∆p =
n
∼

: E
∼

∼

: ∆ε

n
∼

: E
∼

∼

: n
∼

+ H

is exact but can be replaced by:

φ = σeq −R(p) = 0

It is wrong if R depends on an external parameter (temperature,. . . ) as:

ṗ =
n
∼

: E
∼

: ε̇
∼

−R,T Ṫ

n
∼

: E
∼

∼

: n
∼

+ H

The correct incremental equation is then:

∆p =
n
∼

θ : E
∼

θ : ∆ε
∼

−Rθ
,T ∆T

n
∼

θ : E
∼

∼

θ : n
∼

θ + Hθ

This method should be avoided !
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Residual vector

Re = ∆ε
∼

e + ∆pn
∼

θ −∆ε

Rp = φ = σθ
eq −R(pθ)

R = (Re, Rp)

Integration : von Mises 27



Jacobian matrix . . . a though job

• The Jacobian matrix can be written by bloacks:

[J ] =









∂Re

∂∆ε
∼

e

∂Re

∂∆p
∂Rp

∂∆ε
∼

e

∂Rp

∂∆p








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Computation of the blocks related to Re = ∆ε
∼

e + ∆pn
∼

θ −∆ε

∂Re

∂∆ε
∼

e

= 1
∼

∼

+ ∆p
∂n

∼

∂σ
∼

:
∂σ

∼

∂ε
∼

e

:
∂ε

∼
e

∂∆ε
∼

e

E
∼

∼

θ θ1
∼

∼

N
∼

∼

N
∼

∼

=
1

σeq

(

3

2
J
∼

∼

− n
∼

⊗ n
∼

)

⇒ ∂Re

∂∆ε
∼

e

= 1
∼

∼

+ ∆pN
∼

∼

θ : E
∼

∼

θ

∂Re

∂∆p
= n

∼

θ

Integration : von Mises 29



Computation of the blocks related to Rp = σθ
eq −R(pθ)

∂Rp

∂∆ε
∼

e

=
∂σeq

∂σ
∼

:
∂σ

∼

∂ε
∼

e

:
∂ε

∼
e

∂∆ε
∼

e

= θn
∼

: E
∼

∼

∂Rp

∂∆p
= −∂R

∂p

∂p

∂∆p
= −θHθ

Integration : von Mises 30



Tangent matrix vs. consistent tangent matrix

• Tangent matrix
σ̇
∼

= L
∼

∼

p : ε̇
∼

• Calculated as:

σ̇
∼

= E
∼

∼

: (ε̇
∼

− ṗn
∼

)

and

ṗ =
n
∼

: E
∼

∼

: ε̇
∼

n
∼

: E
∼

∼

: n
∼

+ H

imply

L
∼

∼

p = E
∼

∼

−
(E
∼

∼

: n
∼

)⊗ (n
∼

: E
∼

∼

)

n
∼

: E
∼

∼

: n
∼

+ H

Implicit integration : Computation dof L
∼

∼
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• Consistent tangent matrix

L
∼

∼

=
∂∆σ

∼

∂∆ε
∼

∆σ
∼

= E
∼

∼

: (∆ε
∼

−∆pn
∼

)

δ∆σ
∼

= E
∼

∼

: (δ∆ε
∼

− δ∆pn
∼

−∆pδn
∼

)

. . .

it can be shown that
L
∼

∼

≈ L
∼

∼

p −∆pE
∼

∼

: N
∼

∼

: E
∼

∼

+ O
∼

∼

(∆p2)

Implicit integration : Computation dof L
∼

∼
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Automatic and generic computation of the consistent tangent matrix

• Internal variables and residuals can be expressed in a very general way as:

[A] = (ε
∼

e, [a])

[R] = ([R]e , [R]a)

[R]e = ∆ε
∼

e + ∆ε
∼
irr −∆ε

∼

• Influence of a small varaition of ∆ε
∼

on the internal variables (ε
∼

e, [a]) ? (around the
solution)

• [R] must stay null

δ [R] = [0] = δ





∆ε
∼

e + ∆ε
∼
irr

[R]a



− δ





∆ε
∼

[0]





δ [R] =
∂ [R]

∂ [A]
−





δ∆ε
∼

[0]



 = [J ] .δ∆A−





δ∆ε
∼

[0]





Implicit integration : Computation dof L
∼

∼
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• Consequently

δ∆A = [J ]−1 .





δ∆ε
∼

[0]





• [J ]
−1 can be divided in sub-blocks:

[J ]
−1

= [J ]
?

=





[J ]?ee [J ]?ea

[J ]
?
ae [J ]

?
aa



 ,

• One therefore gets :
δ∆ε

∼
e = [J ]?ee .δ∆ε

∼

• Using the Hooke law (elasticity):

σ
∼

(t1) = σ
∼

(t0) + ∆σ
∼

= E
∼

∼

(t1) : ε
∼

e(t1) = E
∼

∼

(t1) : (ε
∼

e(t0) + ∆ε
∼

e)

so that:
δ∆σ

∼

= E
∼

∼

(t1) : δ∆ε
∼

e = E
∼

∼

(t1) : J
∼

∼

?
ee : δ∆ε

Implicit integration : Computation dof L
∼

∼
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• The consistent tangent matrix is therefore given by:

L
∼

∼

= E
∼

∼

(t1) : J
∼

∼

?
ee

• In case where E
∼

∼

depends on an internal variable (e.g. d=damage) then

∆σ
∼

=
∂E

∼

∼

∂d
δ∆d : ε

∼
e + E

∼

∼

(t1) : ∆ε
∼

e

L
∼

∼

=
∂E

∼

∼

∂d
: (ε

∼
e ⊗ [J ]?de) + E

∼

∼

: J
∼

∼

?
ee

Implicit integration : Computation dof L
∼

∼
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Explicit/Implicit

Explicit Implicit

easy to implement difficult to implement

slow fast

L
∼

∼

? direct computation of L
∼

∼

• L
∼

∼

can be evaluated by perturbation

Lijkl =
σij(∆ε

∼

+ δεµ
∼

kl)− σij(∆ε
∼

)

δε

Implicit integration : Computation dof L
∼

∼

36



Choosing de θ in the case of plasticity
The hardening law is

R(p) = 300 + 100(1− exp(−200p)) MPa

solution exacte

J(σ
∼

) = R à θ = 1
2 : �

J(σ
∼

) = R à θ = 1 : +
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Solution(s)

• Use θ = 1

•Write the residual Rp for θ = 1

Re = ∆ε
∼

e + ∆pn
∼

θ −∆ε

Rp = σ1
eq −R(p1)

• Internal variables must be evaluated at both tθ (Re) and t1 = t + ∆t (Rp) !
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Plasticity : variable temperature
It is assumed that the flow stress R depends on temperature T The consistency condition
is expressed as:

ḟ = n
∼

: σ̇
∼

−R,pṗ−R,T Ṫ = 0

and one gets

ṗ =
n
∼

: C
∼

∼

: ε̇
∼

t −R,T Ṫ

R,p + n
∼

: C
∼

∼

: n
∼

using the previous exemple with:

R(p, T ) = [300 + 100(1− exp(−200p))][1− T/200]

it is shown the omitting the R,T Ṫ term in the consistency condition leads to wrong
results:
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Runge–Kutta (ḟ faux)
θ—m’ethode
Runge–Kutta

d’eformation plastique (%)
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400
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In the case where the elasticity coefficients also depend on temperature, this dependance
must also be accounted for while writting the consistency condition. The plastic
multiplier is then expressed as:

ṗ =
n
∼

: C
∼

∼

: ε̇
∼

t − Ṫn
∼

: C
∼

∼

,T : εe −R,T Ṫ

R,p + n
∼

: C
∼

∼

: n
∼

It may become difficult to take into account the various possible dependancies when
several external parameters are prescribed.

This problems are avoided in the case of the θ–method as in all case the yield condition
is deirctly used ft+∆t = 0 and not ḟ = 0.
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Prandtl–Reuss law: creep
In the case of a viscous material, ṗ is directly obtained from the creep low:

ṗ = φ(σ
∼

, Ai)

θ–method:
rp = ∆p−∆t φ(J −R, . . . )θ = 0

The partial derivatives related to the computation of the Jacobian matrix are:

∂rp

∂∆ε
∼

e

= −θ∆t φ,ω C
∼

∼

: n
∼

∂rp

∂∆p
= 1 + θ ∆t R,p φ,ω

There are not longer problems related to the calculation of the consistency condition. A
“creep law” can be used to mimic plasticity. For instance using a Norton law

φ(ω) =
〈 ω

K

〉n

if n is high enough, one gets
J −R ' K
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• example with n = 10 and K = 1, 10, 50. When K is small enough, the viscoplastic
solution tends towards the plastic solution

K = 50
K = 10
K = 1

plastique

d’eformation plastique (%)
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Multi–kinematic law : constitutive equations
• The law is expressed using the following state internal variables

ε
∼

e elastic strain tensor

α
∼

i kinematic hardening variable tensors

r isotropic hardening variable

• The following variable is an auxiliary variable:

p cumulated plastic strain

Forces associated to the state variables are:

σ
∼

= C
∼

∼

: ε
∼

e

X
∼

i = C
∼

∼

i : α
∼

i

R = cr
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• The back-stress X
∼

is given by:

X
∼

=
∑

i

X
∼

i

The evolution laws are given by:

ε̇
∼

e + ε̇
∼

p = ε̇
∼

t

α̇
∼

i = ε̇
∼

p − ṗD
∼

∼

i : α
∼

i

ṙ = ṗ− ṗbr

• The plasticity criterion is given by:

f =
∣

∣

∣

∣σ
∼

−X
∼

∣

∣

∣

∣

M
− σy −R ≥ 0

σy is the size of the initial elastic domaine. The norm ||.||M is used to model plastic
anisotropy:

∣

∣

∣

∣a
∼

∣

∣

∣

∣

M
=
(

a
∼

: M
∼

∼

: a
∼

)
1

2

where M
∼

∼

is a fourth order tensor such that M
∼

∼

: 1
∼

= 0
∼

.
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• In the viscous case (studied in the following)

ṗ = φ(f, . . . )

• The flow direction (normality) is expressed as:

n
∼

=
∂f

∂σ
∼

=
1

∣

∣

∣

∣σ
∼

−X
∼

∣

∣

∣

∣

M

M
∼

∼

: (σ
∼

−X
∼

)

• To compute the Jacobian matrix, the following tensor is also needed:

N
∼

∼

=
∂n

∼

∂σ
=

∂2f

∂σ2
=

1
∣

∣

∣

∣σ
∼

−X
∼

∣

∣

∣

∣

M

(

M
∼

∼

− 1
∣

∣

∣

∣σ
∼

−X
∼

∣

∣

∣

∣

2

M

M
∼

∼

: (σ
∼

−X
∼

)⊗M
∼

∼

: (σ
∼

−X
∼

)

)

• C
∼

∼

i, D
∼

∼

i and M
∼

∼

are used to model anisotropy. The isotropic case corresponds to:

C
∼

∼

i = Ci1
∼

∼

, D
∼

∼

i = Di1
∼

∼

and M
∼

∼

= J
∼

∼

.

• Runge–Kutta is straigthforward !
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Multi–kinematic law : θ–method

• The time discretization of the previous equations leads to:

r
∼

e = ∆ε
∼

e + ∆pn
∼

−∆ε
∼

t = 0
∼

r
∼

αi
= ∆α

∼
i −∆pn

∼

+ ∆pD
∼

∼

i : α
∼

i + θDi∆α
∼

i ∆p = 0
∼

rr = ∆r −∆p(1− br) = 0

rp = ∆p− φ(f, . . . )∆t = 0

• Variables ε
∼

e, α
∼

i, r are considered e time t + θ∆t and are equal to: ε
∼

e(t) + θ∆ε
∼

e,
α
∼

i(t) + θ∆α
∼

i, r + θ∆r.

• Plastcity can be treated writting:

rp =
∣

∣

∣

∣σ
∼

−X
∼

∣

∣

∣

∣

M
−R− σy = 0

∣

∣

1

• The Jacobian matrix is expressed in the following slides . . .

Multi–kinematic law 47



r
∼

e = ∆ε
∼

e + ∆pn
∼

−∆ε
∼

t=0
∼

∂r
∼

e

∂∆ε
∼

e

= 1
∼

∼

+ θ∆pN
∼

∼

C
∼

∼

∂r
∼

e

∂∆α
∼

i

= ∆p
∂n

∼

∂X
∼

i

∂X
∼

i

∂α
∼

i

∂α
∼

i

∂∆α
∼

i

= −θ∆pN
∼

∼

C
∼

∼

i

∂r
∼

e

∂∆r
= 0

∂r
∼

e

∂∆p
= n

∼
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r
∼

αi
= ∆α

∼
i −∆pn

∼

+ ∆pD
∼

∼

i : α
∼

i + θDi∆α
∼

i ∆p = 0
∼

∂r
∼

αi

∂∆ε
∼

e

= −∆p
∂n

∼

∂σ
∼

∂σ
∼

∂ε
∼

e

∂ε
∼

e

∂∆ε
∼

e

= −θ∆pN
∼

∼

C
∼

∼

∂r
∼

αi

∂∆α
∼

i

= 1
∼

∼

+ θ∆pD
∼

∼

i

∂r
∼

αi

∂∆r
= 0

∂r
∼

αi

∂∆p
= −n

∼

+ D
∼

∼

i : α
∼

i
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rr = ∆r −∆p(1− br) = 0

∂rr

∂∆ε
∼

e

= 0
∼

∂rr

∂∆α
∼

i

= 0
∼

∂rr

∂∆r
= 1 + θ∆pd

∂rr

∂∆p
= b r
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rp = ∆p− φ(f, . . . )∆t

∂rp

∂∆ε
∼

e

= −∂F

∂f

∂f

∂σ
∼

∂σ
∼

∂ε
∼

e

∂ε
∼

e

∂∆ε
∼

e

= −θ∆tφ,fn
∼

: C
∼

∼

∂rp

∂∆α
∼

i

= θ∆tφ,fn
∼

: C
∼

∼

i

∂rp

∂∆r
= − ∂φ

∂R

∂R

∂r

∂r

∂∆r
∆t = θ∆tcφ,f

∂rp

∂∆p
= 1
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Multi–kinematic law : static recovery

Static recovery can easily be added by modifying the evolution laws for the hardening
(both isotropic and kinematic) variables:

α̇
∼

i = ε̇
∼

p − ṗD
∼

∼

i : α
∼

i − S
∼

∼

i : α
∼

i

ṙ = ṗ− ṗbr − sr

In the calculation of the Jacobian matrix, the following terms must be added:

−θ∆tS
∼

∼

i à ∂r
∼

αi
/∂∆α

∼
i

−θ∆ts à ∂r
∼

αi
/∂∆r
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Multi–kinematic law : variable temperature

• Material coefficients may depend on external parameters and state varaibles

• These coefficients must be evaluated at t, t + θ∆t or t + ∆t.

• In the case of the Runge–Kutta integration, using a viscous creep law allows to bypass
the computation of the plastic multiplier using the consistency condition.

• An error is often done. . .

The relationships

X
∼

=
2

3
Cα

∼

α̇
∼

= ε̇
∼

p −
3

2
ṗ
D

C
α
∼

are replaced by

Ẋ
∼

=
2

3
Cε̇

∼
p −DṗX

∼

which is only valid if C is a constant. In fact:

Ẋ
∼

=
2

3
d(Cα

∼

)/dt =
2

3
C,T Ṫα

∼

+
2

3
Cα̇

∼

Multi–kinematic law 53



• Comparaison of the results with

C = 30000(1− T/200) D = 200

K = 20 n = 10 R = 300 E = 200000

and the following load path

T

-100

+100

+350

-350
0.02s

σ

t
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In both cases, ratchetting is obtained but the results strongly differ
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