
Developer Manual

Z-set
Version 8.2

Transvalor / ENSMP

Centre des Matériaux

B.P. 87 – F-91003 EVRY Cedex

http://www.mat.ensmp.fr

Northwest Numerics, Inc.

1219 Westlake Ave. N. #210

Seattle, WA 98115

http://www.nwnumerics.com

Fall 2000

http://www.mat.ensmp.fr
http://www.nwnumerics.com

Neither Northwest Numerics and Modeling, Inc. or the Ecole des Mines de Paris assume responsibil-
ity for any errors appearing in this document. Information provided in this document is furnished
for informational use only, and is subject to change without notice, and should not be construed
as a commitment by Northwest Numerics and Modeling, Inc. Z-set, ZebFront, Z-mat and Zebulon
are trademarks of Northwest Numerics and Modeling, Inc.

c©Northwest Numerics and Modeling, Inc. 1998-2000.
Proprietary data. Unauthorized use, distribution, or duplication is prohibited. All rights reserved.

ABAQUS is a registered trademark of Hibbit Karlsson & Sorenson, Inc.
Solaris is a registered trademark of Sun Microsystems
Silicon Graphics is a registered trademark of Silicon Graphics, Inc.
Hewlett Packard is a registered trademark of Hewlett Packard Co.
Windows, Windows 2000, and Windows NT are registered trademarks of Microsoft Corp.

Chapter 1

Introduction

Z-set 1.1

Introduction

Introduction

This manual covers the interfaces for developing material laws and FEA methods in
Zebulon/Z-mat. Unlike other FEA codes which provide specific user routines to be re-
defined, Z-mat and Z-set come with full featured application programming interfaces API,
and a custom build environment. On unix machines makefiles are generated automati-
cally, and on windows platforms a Microsoft Visual Studio project is generated, with all
appropriate options set.

The API allows the user to make developments which span the whole range of analysis,
adding for example new material behaviors, elements, post calculations, and even meshing
and visualization options in the Zmaster program (without knowing GUI programming).
The code is supplemented with many example additions in the form of our plug-in source
repository, and ZebFront example files.

If there are specific issues of interest which are not documented, please feel free to
inquire about them through the technical support hotline or e-mail.

Code Changes:
Zebulon/Z-mat are products under intensive development, and the code reflects this. All
programs and utilities within Zebulon are done in C++ and use the same base classes. We
emphasis modularity in design, but are not currently making any attempt to provide a
static (fixed) interface design. This means that we will feel free to modify class implemen-
tations and interfaces as seen fit to allow rapid advancement of the code. The best way to
avoid this constant change is to use ZebFront where ever it is implemented.

Environment:
The most classical error with Zebulon is the incorrect setting of environment variables, or
mixing versions (a script from one version trying to run with a different $Z7PATH. Please
make sure that you change versions cleanly:

setenv Z7PATH ‘pwd‘
source $Z7PATH/lib/Z7_cshrc

Make sure that the desired version is listed before others in your path and
LD_LIBRARY_PATH variable (or SHLIB_PATH on HP-UX or LIBPATH on AIX).

Compiler options:
Compiler options can be set in a variety of ways. First, when compiling (using Zmake)
the script looks for an entry in $Z7PATH/lib/MACHINE_TYPES headed by the hostname. If
so found, it will take the compiler and associated options from there. This file lets any
computer use any options as required. If the file is not there, or the current machine is not
listed, the script will look through the compilers listed in $Z7PATH/lib/COMPILER_DEFS,
and use the first one found.

Additional options and link libraries can be found
in files named $Z7PATHlib/Makefile.XXX/ The exact file of interest is indicated in your
project library_files file. These Makefile headers may in turn include additional files,
such as $Z7PATH/lib/Motif_lib_$(Z7MACHINE).

Z-set 1.2

Introduction

Why libraries:
The use of shared libraries allows different configurations of Zebulon/Z-mat to be built,
and user additions to be made. For use with other codes such as in Z-mat for ABAQUS,
the libraries alleviate the need for a compiler when running ABAQUS. The following sum-
marizes the different component libraries in Zebulon.

The libraries are found in $Z7PATH/PUBLIC/lib-$Z7MACHINE. Static libraries end with
.a (except on AIX, where these are shared) and shared libraries ending in .so (or .sl
on HP-UX or .a on AIX). For windows platforms the libraries are called Dynamic linked
libraries or DLLs. They are found in the $Z7PATH\win32 directory.

Foundations:

$Z7PATH/PUBLIC/lib-$Z7MACHINE/libzTools.so library of just the tools items. Not
used for Z-set, but useful for making utility programs.

$Z7PATH/PUBLIC/lib-$Z7MACHINE/libZmat base.so %Z7PATH%/win32/zmat base.dll Util-
ity Library of items used in the Z-mat product, including optimization and simula-
tion.

$Z7PATH/PUBLIC/lib-$Z7MACHINE/libZfem base.so %Z7PATH%/win32/zfem base.dll Li-
brary of items used in Z-set, and the Zmaster interface. Not used when executing
Z-mat.

User plug-ins:
Plug in functionality is added by making extra libraries which are loaded dynamically. The
libraries will be searched in for first in the $Z7PATH/PUBLIC/lib-$Z7MACHINE directory on
unix systems, or in $Z7PATH/win32 for windows systems, followed by any libraries in the
directory pointed to by $ZEBU_PATH and finally in the current working directory of the
problem.

• libZmatxxx.so zmatxxx.dll User library plug-ins which will be loaded for Z-mat
and Z-set applications.

• libxxx.so xxx.dll Any other library in the search path not included

Running Zmat will cause only shared libraries named Zmat*.so (or Zmat*.dll, etc) to be
loaded. Otherwise the software will load all extra libraries found (not part of the standard
distribution), if possible. If the library causes an undefined symbol or other error, it will
not be loaded. There are messages issued at the beginning of the program launch indicating
what is getting loaded.

Example project:
There is an example project in the test directory $Z7PATH/User_project/ Please note that
the format of the projects in this directory may change from version to version. Each time
you upgrade, you should at least look for differences in the configuration and source, and
possibly re-build your personal project using the new User_project directory of interest.

Z-set 1.3

Introduction

In these projects, there are different ways of making user additions. The most common
(recommended) way is to build shared libraries, which will be loaded dynamically as plug-
ins (see above).

An example unix configuration file for 2 libraries, one for Z-mat use and one for general
Z-set use follows (from the example directory). The file name by default is library_files
but one can use any file by executing Zsetup -f file.

%
% User-project/library_files
%
!MESSAGE User Z7 project

% !TOP Makefile.top
!TOP Makefile.Motif.c++

!DYNAMIC
!CFLAGS -I${Z7PATH}/include
!BFLAGS -L${Z7PATH}/PUBLIC/lib-${Z7MACHINE}

!MAKE target: lib

!INC material
!SRC material material
!INC finite_element
!SRC finite_element finite_element
!DEBUG material finite_element

!LIB Zmat_utest material
!LIB Zfem_utest finite_element

!!RETURN

Any time a new file is added, the makefile should be re-generated using the Zsetup com-
mand.

The file for Win32 development is different. Unfortunately the options and linking
libraries are somewhat complicated here, but the standard default file should work as-is
for most cases.

%
% User-project/proj.zpr
%
% !ALLOW_DEBUG
!VCPP 6.00
!OPT CPP /D "ZEXCEPTIONS" /Tp /D "DLL2" /D "_WIN32" /I "include"
!O_OPT CPP /O2 /D "NDEBUG"
!D_OPT CPP /D "ZCHECK" /Od /D "NDEBUG" /Zi

!OPT LINK32 /NODEFAULTLIB kernel32.lib user32.lib gdi32.lib winspool.lib

Z-set 1.4

Introduction

comdlg32.lib advapi32.lib shell32.lib rpcrt4.lib ole32.lib oleaut32.lib
uuid.lib odbc32.lib odbccp32.lib libcimt.lib LIBCMT.lib OLDNAMES.lib
libcpmt.lib msvcrt.lib /INCREMENTAL:YES /debug

!DLL zmat_test_models
!GROUPS

material
!USE

zmat_base

!OPT LINK32 /NODEFAULTLIB kernel32.lib user32.lib gdi32.lib winspool.lib
comdlg32.lib advapi32.lib shell32.lib rpcrt4.lib ole32.lib oleaut32.lib
uuid.lib odbc32.lib odbccp32.lib libcimt.lib LIBCMT.lib OLDNAMES.lib
libcpmt.lib msvcrt.lib MFC42.LIB /INCREMENTAL:YES /debug

!DLL zfem_test_models
!GROUPS

finite_element
!USE

zmat_base
zfem_base

!!RETURN

Patching Auto-loaded Classes:
Plug-in additions to the code are interfaced with the standard libraries through the Object-
factory interface (see page 5.25). This interface loads keyword to class creation mappings,
and will look for existing entries before adding a new one. If a keyword exists beforehand,
it will be replaced by the new one. It is important however that the class name
(the C++ name) be different. Since the shared libraries are loaded after the program
starts executing, this allows patches to be very easily made.

Z-set 1.5

Basic rules

Basic rules

Language:

English will be used as programming language. Things like :

// calcul de stress
//

contrainte=strain*elas;

will therfore be avoided

*.h files:

*.h files will be organized according to the following template:

#ifndef __File_name__
#define __File_name__

Do not forget to insert a #endif at the end of the file. For instance if the file is called
String.h it should contain

#ifndef __String__
#define __String__
...
#endif

This is mandatory in order to avoid to include the same file several times. Classes will
then be defined. Other header files can also be included when it is necessary. Note that
if a pointer or a reference it used, it is not necessary to include the header file where the
class is defined¿ Therefore

#include <String.h>
...

void myfunction(const STRING&);

can be replaced by

class STRING;
...

void myfunction(const STRING&);

This decreases the number of interdependances between header files and can be very
useful to speed up the make.

*.c files:

It is recommanded to put together in a single file all member functions of a class,
according to the following template:

Z-set 1.6

Basic rules

#include <...> // C++ : alphabetical order
...
#include <...> // Zebulon : alphabetical order

// implementation of class X

CREATE AND INITIALIZE STATIC DATA MEMBER[S]

CREATOR[S]

DESTRUCTOR

MEMBER FUNCTION[S]

FRIEND FUNCTION[S]

// implementation of class Y
...

include will be inserted at the beginning of the file by alphabetical order. C++ files
and Zebulon will be separated.

Comments:

Comments should be written according to the specific C++ syntax (ie //) instead of
the C syntax (ie. /* */).

/* this is a comment
on the way to write comments

*/

should be replaced by

// this is a comment
// on the way to write comments

Please write a self–commented program. Instead of

TENSOR2 s(d); // s : stress, d : dimension

write:

TENSOR2 stress(dimension);

names:

Give explicit names to variables, classes and functions.
Use enum rather than integers.

Z-set 1.7

Basic rules

switch(type) {
case 1 : do_ps(); break;
case 2 : do_pe(); break;

};

is usefully replaced by

switch(type) {
case PLAIN_STRESS : plane_stress(); break;
case PLAIN_STRAIN : plane_strain(); break;

};

Global variables:

Avoid global variables. Rather use static class data members. 1

Static variables:

Static data variables (non-const) should be avoided. They cause problems in parallel
applications where one instance of the variable may be manipulated by multiple processes
at the same time.

Enumerations:

Do not create global enumerations. Attach them to classes.

class DOF {
....

public :
enum DOF_TYPE {U1,U2,U3,EZ,R1,R2,R3,PR,TP};
...

};

They are used is the following manner.

ARRAY<DOF::DOF_TYPE> dof_names(2);
dof_names[0]=DOF::U1; dof_names[1]=DOF::U2;

1See Reference manual for the list of global variables.

Z-set 1.8

Style, definition

Style, definition
Class Organisation:

class organisation
The following order will be used when defining a class.

class T {
private :
protected :
public :

};

The class name should be written using uppercase letters. private members are defined
before protected members which are defined before public members. In each group,
member s are defined in the following order.

enum
data
static data
[creator]
[destructor]
function
virtual function
virtual function=0
static function
friend function
friend class

Class Syntax:

• The class name should be written using uppercase letters

• static members (data and functions) should be defined using names in which the first
letter is uppercase.

• non static members should be defined in lowercase.

• comments will be inserted before the class definition.

• constructors and destructors will be defined before the other member functions.

• short comments can be inserted in the class definition.

Example:

Z-set 1.9

Style, definition

// ************* Comment
//
// DRAW_OBJECT :
// base class for all object that can be drawn
// draw() is defined as virtual pure, so don’t forget
// to define it when you add your own object
//
// Add a new item to OBJECT_TYPE enumeration when you
// create a new object inheriting from DRAW_OBJECT

// SQUARE :
// this is an exemple for a fully define DRAW_OBJECT
// note that draw() has been defined and reset()
// overloaded.

class DRAW_OBJECT : public OBJECT {
private :

int left,right,top,bottom; // position of the corners
static int Nb_draw_object;

protected :
enum OBJECT_TYPE { SQUARE, TRIANGLE; };
virtual void reset();

public :
DRAW_OBJECT();
DRAW_OBJECT(const DRAW_OBJECT&);
virtual void draw()=0;
static int Nb_object() { return Nb_draw_object; }
friend class PLOTTER;

};

class SQUARE : public DRAW_OBJECT {
private :

int size; // length of one side
void reset();

public :
SQUARE();
SQUARE(const SQUARE&);
virtual void draw();

};

Z-set 1.10

Errors and messages

Errors and messages

Errors:
All errors and important warnings should use the ERROR definitons in Error_messager.h.
The basic messages are summarized below:

• ERROR Basic error. For GUI programming, you should not expect that the pro-
gram will terminate after this call. If the platform compiler supports exceptions,
a Z7_MAIN_ERROR will be thrown. Please be discriptive with your messages. An
example use:

if (bad) ERROR("the calculated result was not ok: "+dtoa(calc));

Use of ERROR will print the file location where the error occured.

• INPUT ERROR Use this call if there is an error reading an ASCII_FILE. It will print
the location of the last file read as part of the message. example:

if (!file.ok) INPUT_ERROR("Trouble reading the precision: "+GLSTR(file));

• DBL REQ Use this as a shortcut when a real (double) value is required for input. Use
of this function will unify the error messages, so it is stongly recommended. example:

eps = file.getdouble(); if (!file.ok) DBL_REQ(eps, file);

• INT REQ similar to DBL_REQ for int values.

• VEC REQ similar to DBL_REQ for vector values. Vectors are in the format
(v1 v2 v3).

• GLSTR utility to get a string value for the last token attempted to be read.

Assertions:
It can be useful to perform tests during the execution of the program to test if there are
some bugs. This however slows down the program so that it should be done in some
particular occasions. The assert function can perform this task. It is implemented as
follows (Assert.h):

#ifdef ZCHECK
#define assert(ex) { if (!(ex)){(void)fprintf(stderr,\

#ex " : assertion failed: file \"%s\", line %d\n",\
__FILE__, __LINE__);abort();} }

#else
#define assert(ex)
#endif

Z-set 1.11

Errors and messages

if ZCHECK is defined (option -DZCHECK while compiling) assert is actually defined. If
the test fails, the program stops and indicates the file and the file where the stop was
triggered. if ZCHECK is not defined, assert is not compiled and nothing appends.

A good example of this mechanism is given be the generic class ARRAY. When asking
for item i using the overloaded operator [] (in Arrayh.).

template <class T> class ARRAY
{

protected : T* x;
int size;

....
T& operator[](int rank)
{ assert(rank>=0 && rank<sz);

return x[rank];
}

....

There is another assertion Assert which works similarly, except that it is always active.
This function is placed in locations which should technically be impossible for a user to
reach. It outputs the stinging message:

Congratulations !! You have generated a Zebulon critical error
XXXX : assertion failed: file SomeFile.c at line XXX

Which sends a user directly to the telephone with no real data for debugging the problem,
so don’t use this thing unless the code really will not be reached. Use an ERROR with some
diagnostic data instead.

Z-set 1.12

Chapter 2

Compiling Utilities

Z-set 2.1

Zmake

Zmake

Description:
This command makes an executable for the current archetecture based on the Zsetup
generated pre-makefile Makefile.dat. If the Makefile.dat was not yet generated, Zmake
will run Zsetup automatically. See below for pre-defined targets.

Syntax:
% Zmake [options] [target] ←↩

CODE DESCRIPTION
-h gives a list of available switches for the command

-alt use an alternate compiler definition

-g make debug version

-md specify filename to replace Makefile.dat

-p make a profile version

-pg make a pg type profile version

Some pre-defined targets are summarized below. Please be carefull with the cleaning
targets, as no questions are asked before running.

objs build objects only

lib build libraries defined with !LIB statements in the library_files configuration
file.

clean clean out makefiles, etc.

archclean clean out binaries and object files for the current archetecture only. Makefiles
are left alone.

distclean wipe out all binaries, objects, and generated makefiles, etc. This should
leave a minimum set of files to make a source distribution of your code.

Z-set 2.2

Zsetup (unix only)

Zsetup (unix only)

Description:
This program generates a Makefile.dat from a configuration file named library_files.
The program is efficient for setting up dependencies, adding new files, managing source
directories, and configuring libraries to create. The program is provided as a utility, and
means for generating appropriate Makefiles for user additions.

Syntax:
In order to configure a source project, define the project structure in library_files and
run Zsetup: % Zsetup [options]←↩

CODE DESCRIPTION
-f filename specify a filename to be used in place of the default library files

-od original debug info for ZebFront programs

The -od switch can be used to debug ZebFront program compilations. By default
ZebFront re-assigns line numbers to the corresponding number in the .z file, and the
.c C++ source is removed after successful compilation. Because many lines are added to
the resulting C++ file, there is a possibility that syntax errors are first referenced in the
generated code. This method of compiling will leave the .c file, and error messages from
the compiler will refer to that file.

The syntax of the library_files is partially summarized below. All commands start
with an exclamation point (!) and are followed by free format lists of parameters. In most
cases the parameters are read until the next command appears (no so for !MAKE). The
parameters may be split with comments. The comment character is the pound sign (#).
The file reading will end with the !!RETURN command, which must exist in the file.

!MAKE Makefile lines which will be added to the top of the Makefile.dat which is
generated. Only the remaining part of the line will be taken. Target command lines
must have a tab in them, so these lines should have a tab immediately following the
!MAKE command.

!DYNAMIC Indicates that all libraries to be generated, and those to be used, will be
shared libraries (.so or .sl format) and not object archives .a.

!CFLAGS These are command options which are added on each source file compilation
line. One could also use the MACHINE_TYPES compiler description file.

!BFLAGS These are command options passed on at the link stage of the compilation.

!INC This command takes only one argument, the name of a directory containing header
files (.h).

Z-set 2.3

Zsetup (unix only)

!SRC Description of the dependencies for a directory with C++ source files. The directory
name must be given, followed by the include directories with .h files used in those
sources.

!FSRC Fortran files directory.

!DEBUG Takes a list of the directories or file names to be compiled in debug when Zmake
is run using the -g switch.

!LIB Defines a library to be created. The first parameter is the name of the library,
followed by the source directories which are contained in it.

!TARGET Defines a target executable. The first parameter is the prefix name of the
executable, followed by the source directories which are contained in it.

Source files are only taken if they begin with a capitol letter, and they must all have
unique names.

Example:
The library_files file used for the small user project is as follows:

!MESSAGE User Z7 project
!DYNAMIC
!CFLAGS -I${Z7PATH}/include
!BFLAGS -L${Z7PATH}/PUBLIC/lib-${Z7MACHINE}
!INC source
!SRC source source
!DEBUG source
!LIB ZeBaBa_User source
!TARGET NONE source
!!RETURN

Z-set 2.4

win proj.exe (win32 only)

win proj.exe (win32 only)

Description:
This program generates a Microsoft Visual Studio project for user development with Z-mat
and Z-set. It configures automatically the EXE or DLL targets, sets up appropriate compile
options, and target directories. It also (very importantly) sets up the custom build options
for ZebFront development.

Syntax:
In order to configure a source project, define the project structure in file.zpr and run
win proj: % win_proj [options] file.zpr ←↩ The program accepts a drag and drop

interface, which is what we recomend. Open the %Z7PATH%\win32 directory and drag/drop
your personal configuration file on the win_proj.exe icon.

The syntax of the .zpr file is significantly different from the library_files one for
unix systems. Normally the pre-configured options given in the User-project example
files are suitable for general use.

!Z7DIR sets the directory to be used in the dev project (helpful if making the project on
unix, for use on another win32 machine, or for configuring another project without
re-setting the Z7PATH).

!O DEST DIR destination for optimized target

!D DEST DIR destination for debug target.

!PROJDIR the working directory. this sets where temp files will go (i.e. in o Win32 or
og Win32.

!ALLOW DEBUG Includes a debug target. The debug one is usually the default when first
loading a newly generated project.

!VCPP Define which Visual C++ you are using.

!OPT Basic C++ compiler options shared between optimize and debug

!O OPT Optimize C++ options

!D OPT Debug C++ options

!OPT LINK32 linker options. Add additional libraries here (for the very brave).

!DLL build a dll (plug-in).

!EXE Build a win32 exe (GUI interface).

!CONSOLE Build a console based (command line) app.

!RES Include the listed resource files.

Z-set 2.5

win proj.exe (win32 only)

!GROUPS Specify directory groups where source files are kept. All *.c files will be added
to the project.

!USE Use the listed DLLs in the final executable.

Example:
The proj.zpr file used for the small user project is as follows:

Optional but perhaps helpful. Using network paths is generally better than
using drive mapped paths (i.e. M:\Z8.0)

!Z7DIR \\Vache\bison\Z8.0
!O_DEST_DIR \\Vache\bison\Z8.0\win32
!D_DEST_DIR \\Vache\bison\Z8.0\debug32
!PROJDIR \\Vache\bison\Z8.0\\User-project

% !ALLOW_DEBUG
!VCPP 6.00
!OPT CPP /D "ZEXCEPTIONS" /Tp /D "DLL2" /D "_WIN32" /I "include"
!O_OPT CPP /O2 /D "NDEBUG"
!D_OPT CPP /D "ZCHECK" /Od /D "NDEBUG" /Zi

!OPT LINK32 /NODEFAULTLIB kernel32.lib user32.lib gdi32.lib winspool.lib
comdlg32.lib advapi32.lib shell32.lib rpcrt4.lib ole32.lib oleaut32.lib
uuid.lib odbc32.lib odbccp32.lib libcimt.lib LIBCMT.lib OLDNAMES.lib
libcpmt.lib msvcrt.lib /INCREMENTAL:YES /debug

!DLL zmat_test_models
!GROUPS

material
!USE

zmat_base

!OPT LINK32 /NODEFAULTLIB kernel32.lib user32.lib gdi32.lib winspool.lib
comdlg32.lib advapi32.lib shell32.lib rpcrt4.lib ole32.lib oleaut32.lib
uuid.lib odbc32.lib odbccp32.lib libcimt.lib LIBCMT.lib OLDNAMES.lib
libcpmt.lib msvcrt.lib MFC42.LIB /INCREMENTAL:YES /debug

!DLL zfem_test_models
!GROUPS

finite_element
!USE

zmat_base zfem_base

!!RETURN

Z-set 2.6

ZebFront

ZebFront

Description:
This command runs a file through the pre-processor ZebFront to compile .z files. Normally
the program will not be used directly by the end-user, but rather as part of a generated
makefile or development project.

Syntax:
% ZebFront [options] file.z ←↩

CODE DESCRIPTION
-h gives a list of available switches for the command

-d run ZebFront in the gdb debugger

-od “original debug” where the line numbers are in the generated .c file
(which is kept)

-o specify output filename (otherwise output is to stdout)

Z-set 2.7

Zcc

Zcc

Description:
Compile a single zebulon file. Handles the difference between .c and .z files.

Syntax:
% Zcc [options]file.[z,c] /←↩

CODE DESCRIPTION
-C give the compiler to use

-I add an include directory

-D add a define

-g compile in debug

-h gives list of options

-od use “original debug” for ZebFront files

-nc don’t clear the screen first

-S stop at assembly code

-E stop after C preprocessor

-alt use alt compiler definition in MACHINE TYPES

Z-set 2.8

Chapter 3

zLanguage

Z-set 3.1

The base language

The base language

Z-set 3.2

The base language

.1 Introduction

zLanguage is an end-user and powerfull scripting language. Its main goal is to provide to
the end-user an acess to all ZeBuLoN internal code without recompiling anything. Using
zLanguage allows end-users to enrich specific parts of the code, mainly post-processing
calculations and boundary conditions. It also allows to generate parametric meshes. It is
difficult to explain how rich and powerfull this extension is : the reader is invited to read
the following pages which contain a lot of different examples from very different areas.
There is especially some very interessting sections named ”How to use a Zlanguage script
to . . . “.

zLanguage consists in several packages devoted to specific parts of the code. Usually
these packages are overlaped : the master package inherits from the base package.

The purpose of this chapter is to explain the base grammar and syntax of zLanguage.
This chapter is not a programming course; the user is supposed to know the basis of
structural programming.

Z-set 3.3

The base language

.2 Script file format

A script file is a regular plain text file as any other ZeBuLoN input file. All instructions
must be ended by a semicolumn (except after a closing block brace); a line can contains
multiple instructions. The two following zLanguage fragments are both legal and code the
same algorithm piece :

void main()
{
double a,b;

a=2.;
b=-1.;

}

void main()
{

double a,b;

a=2.; b=-1.;
}

One can split its script into different files, using #include directive to include one or
more files into another. Suppose that file named ’f1.h’ contains : void do something()
.... , one can use function do something in another script file using :

#include <f1.h>

void main()
{
.....

do_something();
.....
}

In order to avoid infinitely recursive include files, a file is included by another only
if this file has never been included before : suppose that a file named ’f1.z7p’ includes
’f2.h’ and that ’f2.h’ includes ’f3.h’, if ’f3.h’ includes ’f1.z7p’ or ’f2.h’, a warning message
is printed and the file is not included (to avoid infinite include recursion).

Include files are looked for first in Zebulondirectory ($Z7PATH/lib/Scripts) then in the
current working directory.

Z-set 3.4

The base language

.3 Functions

zLanguagecan be seen as a subset of C++. It provides the main characteristics and mecha-
nisms of all object oriented languages, with the exception of defining new types : zLanguage
programs can not define new types and can only use predefined types.

A script consist in a given number of functions. The definition of a function respects
C/C++ standard :

double do_something(double a, int b, string s)
{
}

defines a function named ”do something” taking three agruments : a floating point value
(a), an integer value (b) and a string value (s). This function is also supposed to return a
floating point value.

One special function must at least be defined : the main function. An execution of any
script always start in the main function which must be defined (unless otherwise informed)
as :

void main()
{
}

void is a special type used to informe zLanguage that this function do not return a value.
The parameter list is empty because main is the script starting point.

It is now time to write the well known ”Hello world !” program using zLanguage : put
the following script in a file named ”hello.z7p” and run the dommand ’Zrun -zpt hello.z7p’.
The ’-zpt’ switch starts zLanguage interpreter with the only the base package activated.

void main()
{

("Hello world !"+endl).print();
}

it should write the words ”Hello world !” on a single line. Some explanations about this
first script :

• ”Hello world !” is a constant character string

• endl is a predefined global object (i.e. you can acess this object everywhere in your
scripts). It is just a string object containing a new line character.

• operator + applied to strings is the concatenation operator

after it built the string to write, the script makes a calls to a method1 named ’print’ which
write the contens of the string on the terminal. All objects in zLanguage have a ’print()’
method to write their contens (sometimes this method is a default method doing nothing).

1A method is a function attached to a precise type. The contens of this function is type dependant.

Z-set 3.5

The base language

A somewhat more complex example (write the following script in a file named e.g.
’test 0.z7p’ and run the command ’Zrun -zpt test 0.z7p’) :

void set_parameters(double p1, double p2)
{

p1=1.; p2=2.;
}

void main()
{

double a,b;

a=0.; b=0.;
("Before the call, a="+a+" and b="+b+endl).print();
set_parameters(a,b);
("After the call, a="+a+" and b="+b+endl).print();

}

this script should normally print the following lines (if not, please contact your ZeBuLoN
hotline) :

Before the call, a=0.000000 and b=0.000000
After the call, a=1.000000 and b=2.000000

This script demonstrates :

1. it is possible to add a string and a floating point value. The result is the concatenation
between the first string and the string representation of the floating point value

2. all function parameters are passed by reference : it means that modify a function
parameter modify, in fact, the calling object.

Each function can contain a declaration block and a statements block. The declaration
block consists in a list of typed list.

Z-set 3.6

The base language

.4 zLanguage statements

This section list all valid zLanguage statements, i.e. all basic instructions you can use in a
script, with a trivial example for each statement (the left column contains the script; the
right column contains execution result).

• return(exp) Exit from the current function and return the given expression to the
caller. Care must be taken to not return a parameter in a function returning void !
double func()
{
return(3.);

}

void main()
{
("Function returns : "
+func()+endl).print();

}

Execution :
Function returns : 3.000000

• if(exp) lstatement Execute lstatement if exp if true (i.e. if exp is a positive
integer).
void func(double value)
{
if(value>=0.)
("pos"+endl).print();

if(value<0.)
("neg"+endl).print();

}

void main()
{
double a;

a=2.;
"First call : ".print();
func(a);
a=-1.;
"Second call : ".print();
func(a);

}

Execution :
First call : pos
Second call : neg

• if(exp) lstatement1 else lstatement2 Execute lstatement1 if exp is true, lstate-
ments2 otherwise.

Z-set 3.7

The base language

void func(double value)
{
if(value>=0.)
("pos"+endl).print();

else
("neg"+endl).print();

}

void main()
{
double a;

a=2.;
"First call : ".print();
func(a);
a=-1.;
"Second call : ".print();
func(a);

}

Execution :
First call : pos
Second call : neg

• while (exp) lstatement Execute lstatement while exp is true.

void main()
{
double a;

a=0.;
while(a<10.) {
("a="+a+endl).print();
a=a+1.;

}
}

Execution :
a=0.000000
a=1.000000
a=2.000000
a=3.000000
a=4.000000
a=5.000000
a=6.000000
a=7.000000
a=8.000000
a=9.000000

• do lstatement while(exp) Same as the while statement except that lstatement is
executed before the evaluation of exp (in other words, using do statement, lstatement
is at least one time executed).

void main()
{
double a;

a=0.;
do {
("a="+a+endl).print();
a=a+1.;

} while(a<10.);
}

Execution :
a=0.000000
a=1.000000
a=2.000000
a=3.000000
a=4.000000
a=5.000000
a=6.000000
a=7.000000
a=8.000000
a=9.000000

Z-set 3.8

The base language

• for(init;test;next) lstatement This statement execute init and test. While
test is true, it executes lstatement and next.
void main()
{
double a;

for(a=0.;a<10.;a=a+1) {
("a="+a+endl).print();
a=a+1.;

}
}

Execution :
a=0.000000
a=2.000000
a=4.000000
a=6.000000
a=8.000000

Z-set 3.9

The base language

.5 Debugger

zLanguage implementation provides a simple debugger to help debugging scripts. The
debugger is launched every time ZSet wants to execute a script, as soon as a specific global
parameter is given on the command line. This parameter is named ZPD (for Zset Program
Debugger). The user who wants to debug has just to launch ZSet with options [-s ZPD 1]
whatever the name of the command is (examples : Zrun -s ZPD 1 -pp . . . or Zmaster
-s ZPD 1 -B . . .).

Each time the execution of a script is requested control is given to the internal debug-
ger which prints a prompt (zld ->) and waits for commands. The main commands are
summarized below (bracketed letters design short cuts : the user may type break or just
b) :

• [b]reak : inserts a breakpoint at line li

• [c]ont : continue a suspended execution

• [d]delete <id> : delete breakpoint ¡id¿

• [i]nfo : print breakpoints informations (usefull to get ¡id¿ to be given to [d]elete)

• [n]ext : continue execution and break at next line code

• [p]rint <obj> : prints the contens of object named ¡obj¿

• [f]rame <id> : set active frame to ¡id¿

• [w]here : print call stack and frame ids

• [q]uit : quit and abort execution of the current script

• [h]elp : lists debugger commands

A classical debugging session usually consists in defining some breakpoints ([b]reak
command) and in printing some objects.

Z-set 3.10

The base language

.6 Object

Every accessible type in zLanguageis an object : it contains methods and members.

• A methods is a specific function attached to a particular type : two methods attached
to two different types may have the same name and do completely different things.

• A members is an object attached to a particular type.

Methods and members are accessed using ’.’ operator : alpha.print() executes the
print method of alpha (depending of alpha’s type); beta.size=2; assign 2 to member
size of variable beta (assuming that this assignement has a sense).

Templated types

Some object type are ”templatized“ : they are associated to an underlying type and the
behavior of such type depends on the sub-type. An array object is a very classical templated
type : it is an object by itself, but on the other hand the user has to specify what the type
of the contained sub-objects is.

Such templates classes are intoduced using ¡ and ¿ brackets. The following piece of
script declares an array of string and initializes it :

void main()
{
int i;
ARRAY<string> aos;

aos.resize(5);
for(i=0;i<!aos;i=i+1) aos[i]=("str "+i);
("Sub type of ARRAY<string> is : "+aos.type+endl).print();
("Nb elements : "+!aos+endl).print();
for(i=0;i<!aos;i=i+1) (aos[i]+endl).print();

}

Execution :
Sub type of AR-
RAY¡string¿ is :
string
Nb elements : 5
str 0
str 1
str 2
str 3
str 4

In the following sections templated types are explicitely signaled.

Z-set 3.11

The base language

.7 Base types

This section describes base zLanguage types (these types are always accessible, whatever
package you are using). i denotes an integer value, d a floating point value.

• int : represents an integer.

Operators :

– + - * / : classical arithmentic operators. With two integer operands, the
result is always an integer (/ represents the euclidian divide operator). When
the second operand is a floting point value, the result is also a floting point value
(/ represents the floating point divide operator).

– % : the remainder of an euclidian division (7%4=3). Usefull to test if an integer
value is odd or even.

– = : assignment operator.

– ++ : increase value by one (3++=4).

– : decrease value by one (3=2).

– > < >= <= == != : classical comparison operators.

– ! | & : boolean operation not, or and.

Methods :

– print() : print current value.

• double : represents a floating point value.

Operators :

– + - * / : classical arithmentic operators.

– = : assignment operator.

– > < >= <= == != : classical comparison operators.

Methods :

– print() : print current value.

• string : represents a character string.

Operators :

– + : concatenation operator. The second operand can be : a string, an integer
or a floating point value.

– = : assignment operator.

– == != : classical comparison operators.

Methods :

– print() : print current value.

Z-set 3.12

The base language

• VECTOR : array of floating point values.

Operators :

– + - : + and - operators. Both operands must be vectors with the same size.

– * / : Multiply or divide a vector by a floating point or an integer value.

– = : assignment operator. It is possible to assign a vector with another vector
(component to component copy), with an integer or a floating point value (all
component are set to this value), or with a TENSOR2 object.

– ! : current size.

– | : dot product (v1—v2=sum(v1[i]*v2[i],i)).

– [i] : component access (v[i] denotes the ith component of vector v).

Methods :

– set(...) : initialize vector. This method takes a list of floating or integer
values, resize and initialize vector.

– resize(int) : resize vector.

– print() : print current value.

• TENSOR2 : tensor of order 2.

Operators :

– + - : + and - operators. Both operands must be tensors of order 2 with the
same size.

– * : Multiply a TENSOR2 by a floating point, an integer value or a TENSOR2
object.

– / : Divide a TENSOR2 by a floating point or an integer value.

– = : assignment operator. It is possible to assign a vector with another vector
(component to component copy), with an integer or a floating point value (all
component are set to this value), or with a TENSOR2 object.

– ! : current size.

– [i] : component access (v[i] denotes the ith component of vector v).

Methods :

– set(...) : initialize TENSOR2. This method takes a list of floating or
integer values. It resizes and initializes TENSOR2.

– mises() : return mises norm.

– trace() : return trace.

– deviator() : return deviatoric part.

– resize(int) : resize TENSOR2.

– print() : print current value.

• MATRIX : general matrix.

Operators :

Z-set 3.13

The base language

– + - : + and - operators. Both operands must be matrices with the same sizes.

– * : Multiply a MATRIX. Right operand can be of type double, int, VECTOR
or MATRIX.

– = : assignment operator. It is possible to assign a vector with another MATRIX
(component to component copy), with an integer or a floating point value (all
component are set to this value).

– (i,j) : component access (m(i,j) denotes the component i,j of matrix m).

Methods :

– set rotation(double alpha) : initialize matrix to be a 2D rotation operator
with center (0.,0.) and angle alpha.

– resize(int n,int m) : resize a MATRIX with n rows and m columns.

– print() : print current value.

Members :

– int n (ro) : current number of rows.

– int m (ro) : current number of columns.

• ARRAY<T> : general array of object. Templated type

Operators :

– ! : current size.

– [i] : component access (a[i] denotes the ith object of ARRAY a).

Methods :

– resize(int) : resize an ARRAY. This operation is safe regarding to stored
components : previously stored components are preserved.

– print() : print current value.

Members :

– string type (ro) : a string containing the sub-type of this templated object.

• POINTER : generic pointer.

Operators :

– = : pointer assignement. Right operand may be any object.

Methods :

– set type(string) : define the underlying type.

Members :

– string type (ro) : current object type.

– OBJECT object (rw) : current object.

Z-set 3.14

The base language

Note that this type is not a templated type (the reason is that this generic pointer
can stores ”on the fly“ any object changing during the execution).

• LIST : list of objects.

Operators :

– [i] : acess the ith object of the list.

– ! : return current list size.

Methods :

– add(OBJECT) : add an object.

– reset() : reinitialize the list (i.e. set the list length to zero).

– suppress(int i) : suppress the ith element of the list.

– print() : print all list objects.

Z-set 3.15

The base language

.8 Predefined objects

This section lists all predefined objects to be used anywhere in a script.

1. Mathematical functions :

• sin(double) : sin

• cos(double) : cos

• tan(double) : tan

• asin(double) : asin

• acos(double) : acos

• atan(double) : atan

• sinh(double) : sinh

• cosh(double) : cosh

• tanh(double) : tanh

• asinh(double) : asinh

• acosh(double) : acosh

• atanh(double) : atanh

• floor(double d) : rounds d downwards to the nearest integer

• ceil(double d) : rounds d upwards to the nearest integer

• sqrt(double d) : square root of d

• abs(double d) : absolute value of d

• ln(double d) : logarithm value of d, base e

• int(double d) : converts double d to integer

• log(double d) : logarithm value of d, base 10

• exp() : exponential

• random() : return a random floating point number in the interval [0..1]

2. Mathematical constants :

• pi : π

• pi2 : π/2

• pi3 : π/3

• pi4 : π/4

• e : e = exp(1)

• inve : 1/e = exp(−1)

3. String constants :

• endl : ”¡CRLF¿” (a string containing the single newline character)

Z-set 3.16

The base language

4. General purpose objects :

• cout : an object to handle streamed console outputs as C++ does. Use
cout<<object to print something on terminal. One can also nest such in-
structions : console<<"Hello world !"<<endl prints the string ”Hello world
!” followed by an carriage return.

• cin : an object to handle streamed console inputs as C++ does. Use
cin>>object to get something from terminal.

• cflush : used to flush output stream. The only method is () : the statement
’cflush();’ flushes output stream.

• ERROR : used to trigger a fatal error. The only method is (string) : the
statement ’ERROR("this is an error"); ’ prints the words ”this is an error”
on the output stream and exits the script.

• plot : an object used to draw a curve from vectors. See next section.

• runge : an object used to solve differential systems. See next section.

• data file : an object used to load and save many things from a file. See next
section.

Z-set 3.17

The base language

.9 Global objects plot, runge and data file

plot :

Methods :

• plot(VECTOR vx, VECTOR vy) : plot curve vy = f(vx) using gnuplot external
program.

Members :

• string labelx (rw) : label of x axis.

• string labely (rw) : label of y axis.

• string title (rw) : title of the curve.

• string style (rw) : style of the curve (see gnuplot online help for more info).

A test program about plot object, which plots the sinus function :

void main()
{

VECTOR vx,vy;
double x;
int i;

vx.resize(20); vy.resize(!vx);
for(i=0;i<!vx;i++) {
x=2*pi/!vx*i;
vx[i]=x; vy[i]=sin(vx[i]);

}
plot.labelx="x";
plot.labely="sin(x)";
plot.title="The sinus function";
plot.style="linespoints";
plot.plot(vx,vy);

}

runge :

Methods :

• integrate(FUNCTION f, double
xi, double xf, VECTOR chi, VECTOR dchi, int sample) : solve the differen-
tial system ∂χ/∂x = f(χ, x) using a Runge-Kutta method. The f FUNCTION must
be a function with signature : void f(double t, VECTOR chi, VECTOR dchi). xi
and xf are the lower and uppper bounds of the interval solution. sample is the number
of samples across the interval solution. chi and dchi are two VECTORs.

Z-set 3.18

The base language

• xintegrate(FUNCTIOn f, double xi, double xf, VECTOR chi,
VECTOR dchi) : solve the same differential system, but gives only the solution at
the upper bound (ie no interval sampling).

• print() : print current Runge-Kutta parameters.

Members :

• double eps r (rw) : εr parameter.

• double ymax r (rw) : ymaxr parameter.

A test program about runge object, which solves the differential system

∂f

∂x
= sin(x)

using integrate and xintegrate.

void main()
{

solve_cos();
x_solve_cos();

}

void derivative(double time, VECTOR chi, VECTOR dchi)
{

dchi.resize(1);
dchi[0]=sin(time);

}

void solve_cos()
{

VECTOR vy,vx;
double ti,tf;

runge.eps_r=.001;
runge.ymax_r=.001;
runge.print();
vy.resize(50);
vx.resize(vy.size());
ti=0.; tf=4*pi;
vy[0]=-1.;
runge.integrate(derivative,ti,tf,vx,vy,vx.size());
plot.labelx="x";
plot.labely="y";
plot.style="linespoints lw 2 ps 2";
plot.title="y=integrate(sin,0.,x)";
plot.plot(vx,vy);

}

Z-set 3.19

The base language

void x_solve_cos()
{

VECTOR chi,vy,vx;
double t0,t1;
double ti,tf;
int i;

chi.resize(1);
runge.eps_r=.001;
runge.ymax_r=.001;
runge.print();
vy.resize(50);
vx.resize(vy.size());
ti=0.; tf=2*pi;
for(i=0;i<!vx;i=i+1) {
if(i==0) t0=ti; else t0=vx[i-1];
vx[i]=tf/vx.size()*i;
t1=vx[i];
if(i==0) chi[0]=0.; else chi[0]=vy[i-1];
runge.xintegrate(derivative,t0,t1,chi);
vy[i]=chi[0];

}
plot.labelx="x";
plot.labely="y";
plot.style="linespoints";
plot.title="y=integrate(sin,0.,x)";
plot.plot(vx,vy);

}

data file :

Methods :

• load globals(string fname) : try to open file named fname. If suceeded, look on
this file to define global double variables.

• load vectors(string fname, VECTOR v1,...) : try to open file named fname. If
suceeded, try to load column vectors onto VECTORs v1,...

• save vectors(string fname, VECTOR v1,...) : save VECTORs v1,... into a file
named fname.

To explain how load globals works, suppose that a file named ’globals.dat’ contains :

A 1.
B 2.

then the two following functions f1 and f2 are strictly equivalent :

Z-set 3.20

The base language

void f1()
{

data_file.load_globals("globals.dat");
}

void f2()
{

global double A,B;

A=1.; B=2.;
}

Z-set 3.21

The base language

.10 Mesher object

It is also possible to acess some mesher objects inside zLanguage. This can be very usefull
to make 3D extension, renumbering,...

• UTILITY MESH : an object representing a mesh (a .geof file).

Methods :

– load(string fmt) : load the current mesh file name using format fmt.

– save() : save mesh using current file name and .geof format.

– print() : print some informations about the stored mesh.

– add(a) : add an UTILITY NODE, UTILITY ELEMENT, UTILITY NSET,
UTILITY ELSET or UTILITY IPSET.

– int nb node() : return number of nodes

– int nb elem() : return number of elements

– int nb nset() : return number of node sets

– int nb elset() : return number of element sets

– int nb ipset() : return number of integration point sets

– UTILITY NODE get node(int n) : return the nth node

– UTILITY ELEMENT get elem(int n) : return the nth element

– UTILITY NSET get nset(int n) : return the nth node set

– UTILITY ELSET get elset(int n) : return the nth element set

– UTILITY IPSET get ipset(int n) : return the nth integration point set

Members :

– string name (rw) : the mesh file name.

• UTILITY NODE : a mesh node object.

Methods :

– print() : print some informations about the current node.

– set rank(int) : set rank of node.

– set id(int) : set id of node.

– int nb elem() : number of elements attached to node.

– UTILITY ELEMENT get elem(int n) : return nth element attached to node.

Members :

– int id (ro) : node id.

– int rank (ro) : node rank.

– VECTOR position (rw) : geometrical position of node.

Z-set 3.22

The base language

• UTILITY ELEMENT : a mesh element object.

Methods :

– print() : print some informations about the current element.

– set rank(int) : set rank of element.

– set id(int) : set id of element.

– int nb node() : number of nodes attached to element.

– UTILITY NODE get node(int n) : return nth node attached to element.

Members :

– int id (ro) : node id.

– int rank (ro) : node rank.

– string type (rw) : element type.

• UTILITY NSET : mesh node set object.

Methods :

– print() : print some informations about the current node set.

– suppress(UTILITY NODE n) : suppress node n from current node set.

– add(UTILITY NODE n) : add node n to current node set.

– reset() : reinitialize curent set (zero size).

– int nb node() : return number of node in set.

– UTILITY NODE get node(int n) : return nth node in set.

Members :

– string name (rw) : node set name.

• UTILITY ELSET : mesh element set object.

Methods :

– print() : print some informations about the current element set.

– suppress(UTILITY ELEMENT n) : suppress element n from current node set.

– add(UTILITY ELEMENT n) : add element n to current node set.

– reset() : reinitialize curent set (zero size).

– int nb elem() : return number of element in set.

– UTILITY ELEMENT get elem(int n) : return nth element in set.

Members :

– string name (rw) : node element name.

• UTILITY IPSET : mesh integration point set object.

Methods :

Z-set 3.23

The base language

– print() : print some informations about the current set.

– suppress(n) : suppress integration point from current set. n can be either an
UTILITY ELEMENT or an UTILITY NODE.

– add(UTILITY ELEMENT n, int i) : add (element n, ip i) to current set.

– reset() : reinitialize curent set (zero size).

– int nb elem() : return number of ip in set.

– UTILITY ELEMENT get elem(int n) : return nth element in set.

– int get ip(int n) : return nth ip in set.

Members :

– string name (rw) : set name.

• MESHER UNION : an object to make union between different meshes.

Methods :

– union(UTILITY MESH m) : make the union between all different meshes previ-
ously designated by method add(). The resulting mesh is stored into m.

– add(UTILITY MESH m) : add a mesh m for later union.

– reset() : reinitialize this object (forget all meshes previously designated by
method add().

Members :

– double tolerance (rw) : tolerance parameter (two nodes are considered to be
the same node if the distance between them is lower than tolerance).

– string elset (rw) : elset name to be created with all elements added by this
object.

• MESHER EXTENSION : an object to make union between different meshes.

Methods :

– apply(UTILITY MESH m) : make the extension using current parameters.

Members :

– string elset (rw) : name of the elset to be extended.

– string elset2 (rw) : name of the second optionnal elset to be extended (see
zMesher manual for more informations).

– double progression (rw) : geometrical progression of the extension.

– double distance (rw) : distance of the extension along 3rd axis.

– int cuts (rw) : number of elements along 3rd axis.

– VECTOR direction (rw) : direction of the 3rd axis.

• RENUMBERING : an object to renumber a mesh (to lower front or band width).

Methods :

Z-set 3.24

The base language

– renumbering(UTILITY MESH m) : renumber given mesh m.

Members :

– int type (rw) : front or band width optilisation (default=0, front optimiza-
tion).

– int subdomain (rw) : equal 1 if domain renumbering (0 by default).

– double w1 (rw) : parameter of the modified Sloan method.

– double w2 (rw) : parameter of the modified Sloan method.

Z-set 3.25

How to use a Zlanguage script in post processing ?

How to use a Zlanguage script in post processing ?

Z-set 3.26

How to use a Zlanguage script in post processing ?

.1 Local post processing

It is very easy to write a local post processing criterion using zLanguage. Just write your
script assuming that two global variables of type VECTOR already exists (named in and
out). For instance to compute mises norm, one can use :

ARRAY input()
{

ARRAY<string> i;

i.resize(4); i[0]="sig11"; i[1]="sig22"; i[2]="sig33"; i[3]="sig12";
return(i);

}

ARRAY output()
{

ARRAY<string> o;

o.resize(1); o[0]="mises";
return(0);

}

void main()
{

TENSOR2 sig;

sig.resize(4);
sig.reassign(4,in,0);
out.resize(1);
out=sig.mises();

}

Then write a ”classical” post-processing input file :

****post_processing
***local_post_processing
**elset ALL_ELEMENT
**output_number 1-2
**file integ
**process z7p

*program post.z7p
****return

Input components are automatically extracted using the script function called input;
output components are taken from function output.

Z-set 3.27

How to use a Zlanguage script in post processing ?

It is also possible to supply two additional function in your script file : void
initialize() and void destroy() which are called just before and just after execut-
ing the post computation. It allows for instance global variables initialization (before
computation) and printing (after).

Z-set 3.28

How to use a Zlanguage script in post processing ?

.2 Global post processing

It is also possible to write global post processing scripts. You only have to assume that
two global variables are defined : ape and apn which are arrays of POST ELEMENT and
of POST NODE. The input file is exactly the same (except for the global options) :

****post_processing
***global_post_processing
**elset ALL_ELEMENT
**output_number 1-2
**file integ
**process z7p

*program post.z7p
****return

The script file could be, for instance (it computes and prints the maximum and mini-
mum values of mises stress over the mesh) :

ARRAY input()
{

ARRAY<string> i;

i.resize(4); i[0]="sig11"; i[1]="sig22"; i[2]="sig33"; i[3]="sig12";
return(i);

}

ARRAY output()
{

ARRAY<string> o;

o.resize(1); o[0]="ffmises";
return(o);

}

void initialize()
{

global double max_mises,min_mises;

max_mises=-MAX_DOUBLE; min_mises=MAX_DOUBLE;
}

void destroy()
{

global double max_mises,min_mises;

endl.print();

Z-set 3.29

How to use a Zlanguage script in post processing ?

("Max mises ="+max_mises+endl).print();
("Min mises ="+min_mises+endl).print();
flush();

}

void compute()
{

int i,j;
TENSOR2 sigma;
global double max_mises,min_mises;
double mises;

for(i=0;i<!ape;i=i+1) {
(" "+i).print(); flush();
for(j=0;j<ape[i].nb_idata();j=j+1) {

sigma.reassign(4,ape[i].idata(j).data,0);
mises=sigma.mises();
ape[i].idata(j).out[0]=mises;
if(mises<min_mises) min_mises=mises;
if(mises>max_mises) max_mises=mises;

}
}

}

Z-set 3.30

How to use a Zlanguage script in post processing ?

.3 Post processing end user objects

• INTEG DATA : represents datas coming from .integ or .ctnod file (ie finite element
results at integration points)

Operators : none

Methods : none

Members :

– VECTOR out : the result vector. Its size should be equal to the number of
components declared in function output

– VECTOR data : the input vector. Its size should be equal to the number of
components declared in function input

• NODE DATA : represents datas coming from .node file (ie finite element results at nodes)

Operators : none

Methods : none

Members :

– VECTOR out : the result vector. Its size should be equal to the number of
components declared in function output

– VECTOR data : the input vector. Its size should be equal to the number of
components declared in function input

• POST NODE : an entity to store nodal datas

Operators :

– int operator!() : return the number of attached NODE DATA

Methods :

– POST NODE data(int n) : return the nth NODE DATA object

Members : none

• POST ELEMENT : an entity to store element datas

Operators : none

Methods :

– int nb idata() : return the number of integ datas (should be equal to the
number of integration points)

– int nb ndata() : return the number of ctnod datas (should be equal to the
number of nodes)

– ELEM DATA idata(int n) : return the nth integ data

– ELEM DATA ndata(int n) : return the nth ctnod data

Z-set 3.31

How to use a Zlanguage script in post processing ?

– void start(MATRIX elem coord) : starts an element loop

– void next(MATRIX elem coord) : next integration point in the element loop

– int ok() : return 0 if the number of integration points has been excedeed, 1
otherwise

– VECTOR shape() : return shape vector for the current integration point

– VECTOR shape inv() : return ”inverse“ shape vector for the current integration
point

– void get elem coord(MATRIX &m) : return int matrix m the elements coordi-
nates

– void get position of integration point(VECTOR &v) : return in vector v
the coordinate of the current integration point

– void integrate(T &v, T &tot) : increment tot with the integral contribu-
tion associated with the current integration point. T may be double, VECTOR or
MATRIX.

Members : none

Z-set 3.32

How to use a Zlanguage script to produce parametric meshes ?

How to use a Zlanguage script to produce paramet-
ric meshes ?

The association of zMaster module and zLanguage provides a very fast and efficient way
to produce parametric meshes. One have simply to write a script describing the geometry
of the mesh and run this script through zMaster module. To activate master objects,
the code must be started with either -B option (batch meshing) or -G option (graphical
interface).

A script started this way has acess to a number of new object types.

Z-set 3.33

How to use a Zlanguage script to produce parametric meshes ?

.1 Master zLanguage types

• POINT : geometrical point.

Operators :

– + - : + and - operators. Right operand can be a POINT or a VECTOR object.

– * / : multiply or divide coordinates by a double.

– = : assignment operator. Right operand can be of type : double, POINT or
VECTOR.

Methods :

– print() : print current value.

Members :

– double x (rw) : x coordinate.

– double y (rw) : y coordinate.

– double z (rw) : z coordinate.

• LINE : geometrical line.

Operators :

– = : assignment operator. Right operand can be of type LINE.

Methods :

– bind(POINT a, POINT b) : anchors line between POINTs a and b. Care must
be taken of order : a is always the final point and b the starting point.

– bind1(POINT a) : set line start point.

– bind2(POINT a) : set line end point.

– length() : return the line length.

– set nodes(int n, double p) : set the number n of edge nodes on the line,
with a geometrical progression of p (use p=1. for linear progression).

– print() : print current value.

Members :

– POINT p1 (rw) : start point. This member must not be requested before a call
to bind() or bind1().

– POINT p2 (rw) : end point. This member must not be requested before a call
to bind() or bind2().

• ARC : geometrical arc.

Operators :

– = : assignment operator. Right operand can be of type ARC.

Z-set 3.34

How to use a Zlanguage script to produce parametric meshes ?

Methods :

– set center(POINT c) : set center POINT c.

– set parameters(POINT c, double r, double
a1, double a2, POINT p1, POINT p2) : set all arc parameters : center c,
radius r, start angle a1 (rad), end angle a2 (rad), start POINT p1, end POINT
p2.

– set arc(POINT c, double r, double a1, double a2) : initialize ARC to
be an arc with center c, radius r, start angle a1 and end angle a2. POINTs p1
and p2 are internally automatically created.

– circle(POINT c, double r) : initialize ARC to be a circle of center c and
radius r.

– set nodes(int n, double p) : set the number n of edge nodes on the line,
with a geometrical progression of p (use p=1. for linear progression).

– print() : print current value.

Members :

– double radius (rw) : ARC radius.

– double aplha1 (rw) : start angle.

– double aplha2 (rw) : end angle.

• RULED : a ruled meshed domain (ie a domain with three or four sides, meshed with a
ruled method).

Operators :

– = : assignment operator. Right operand can be of type ARC.

Methods :

– add(int s, EDGE e) (an EDGE is either a LINE or an ARC) : add edge e to
the s ith side of domain.

– remesh() : mesh only this domain.

– reset() : reinitialize this domain.

– print() : print current value.

Members :

– int method (rw) : linear or not method (see zMaster manual for more infor-
mations).

– int fake4 (rw) : set this member to 1 for three sides domains.

– string element type (rw) : element type to be created.

• DELAUNAY : a Delaunay meshed domain.

Methods :

Z-set 3.35

How to use a Zlanguage script to produce parametric meshes ?

– add(EDGE e) (an EDGE is either a LINE or an ARC) : add edge e. Please
respect order (see zMaster manual for more informations) !

– remesh() : mesh only this domain.

– reset() : reinitialize this domain.

– print() : print current value.

Members :

– int method (rw) : method (see zMaster manual for more informations).

– double propagation (rw) : method parameter.

– double critical angle (rw) : method parameter.

– string element type (rw) : element type to be created.

• PAVING : a paving meshed domain.

Methods :

– add(EDGE e) (an EDGE is either a LINE or an ARC) : add edge e. Please
respect order (see zMaster manual for more informations) !

– remesh() : mesh only this domain.

– reset() : reinitialize this domain.

– print() : print current value.

Members :

– double seam factor (rw) : method parameter.

– double size factor (rw) : method parameter.

– string element type (rw) : element type to be created.

Z-set 3.36

How to use a Zlanguage script to produce parametric meshes ?

.2 Memory management

Memory is automatically managed inside zLanguage: objects are created and destroyed
on demand, when it is necessary. As zLanguageand zMaster are two separate modules of
Zebulon, the user has to tell zLanguagewhich objects have not to be deleted (because these
objects, for instance PAVING will be used by zMaster). This is done using the method
link() : all master objects have a method named link() which ensures that the current
object and all its attachments will not be deleted. Usually, one has only to call link()
for domains since this call ensures also that all lines, arc, points, etc... belonging to this
domain will not be deleted.

Z-set 3.37

How to use a Zlanguage script to produce parametric meshes ?

.3 Interfacing with graphical user interface

It is possible to run script in zMaster graphical user interface : choose ’Run script’ option in
’Action’ menus. A choice window appears with two script lists : the top list contains scripts
located in Zebulondirectories ($Z7PATH/lib/Scripts), the second list contains scripts in the
current working directory. Choose a script then click on ’Setup’ button : anew window
will appear asking for some parameters with default values. How is it possible ?

To activate this possibility, one has only to put at the beginning of its script a special
commented header describing the script and its parameters. The syntax of this header is
as follows :

//
// MASTERSCRIPT
// begin
// STRING name Name A0
// STRING etype Element c2d
// double cx Cx 0.
// double cy Cy 0.
// double alpha Angle 0.
// double radius Radius 1.
// double rel_dist rel_dist 0.66
// int nedges Nedges 4
// bool use_inner_line InnerLine 1
// end
//

The two first lines and the last line are mandatory and conventionnal. The remainder
lines describe some global variables with their type (first word), the variable name inside
the script (second word), the name which will appears in dialog window (third word) and
at last a default value. Currently only types int, bool, double and string are supported (it
is not possible to declare an ARRAY this way, for instance).

One has only to use these global variables inside the script : these variables will be
automatically initialized according to the user specifications. A simple example is :

//
// MASTERSCRIPT
// begin
// double cx Cx 0.
// double cy Cy 0.
// end
//
void main()
{

global double cx,cy;

("Got cx="+cx+" and cy="+cy+endl).print();
}

Z-set 3.38

How to use a Zlanguage script to produce parametric meshes ?

.4 Examples

This section contains some example (very easy to more complex) concerning the use of
zLanguageto make parametric meshes.
• A very simple example : how to mesh a unit square with paving method. Put the

following lines in a file named ’square.z7p’.

void main()
{

POINT a,b,c,d;
LINE c1,c2,c3,c4;
PAVING square;

a.x=0.; a.y=0.; b.x=1.; b.y=0.;
c.x=1.; c.y=1.; d.x=0.; d.y=1.;

//
c1.bind(b,a); c2.bind(c,b);
c3.bind(d,c); c4.bind(a,d);

//
c1.set_nodes(5,1.); c2.set_nodes(6,1.);
c3.set_nodes(7,1.); c4.set_nodes(8,1.);

//
square.add(c1); square.add(c2);
square.add(c3); square.add(c4);

//
square.name="square";
square.element_type="c2d4";
square.mesh.name="square.geof";

//
square.make_connectivity();
square.link();

//
master("save_as square.mast");

}

please note the last instruction (master("save as square.mast");)... master is a global
object which allows to pass string messages to zMaster. The message ”save as toto.mast”
asks zMaster to save the current geometry in a file named ’toto.mast’.

You can run this script either using ’Zrun -B square.z7p’ (the script will be executed
and a master file created), ’Zmaster square.z7p’ (the geometry will be created just after
launch of zMaster), or using ’Run script’ option in ’Action’ menu.
• how to mesh a parametric AE specimen...

//
// MASTERSCRIPT
// begin

Z-set 3.39

How to use a Zlanguage script to produce parametric meshes ?

// STRING name Specimen_name ae_specimen
// STRING eltype Element_type c2d8
// double height Specimen_height 10.
// double width Specimen_width 3.
// double depth Notch_depth 1.5
// double radius Notch_radius 1.5
// int n_left N_edges_left 10
// int n_right N_edges_right 8
// int n_top N_edges_top 5
// int n_bottom N_edges_bottom 5
// int n_arc N_edges_arc 5
// bool reduce Reduced_integration 0
// end
//
void main()
{

global double depth,radius,height,width;
double theta1,theta2;
double s;
global int n_left,n_right,n_top,n_bottom,n_arc;
int tot_edge;
global int reduce;
global string name,eltype;
PAVING specimen;
POINT A,C,D,F,G,H,G1,F1;
LINE l1,l2,l3,l4;
ARC a1;
LISET left,right,top,bottom,notch;

("Got the following values :"+endl).print();
("width="+width+endl).print();
("height="+height+endl).print();
("depth="+depth+endl).print();
("radius="+radius+endl).print();
endl.print();
flush();

//
A.x=0.; A.y=0.;
C.x=0.; C.y=height;
D.x=width; D.y=C.y;
H.x=radius+width-depth; H.y=0.;
G.x=width-depth; G.y=H.y;
if(G.x<=0.) ERROR("Invalid width/depth");

//
s=(width-H.x)/radius;
if((s>0.)|(s<-1.)) ERROR("Invalid radius");
theta1=acos((width-H.x)/radius);

Z-set 3.40

How to use a Zlanguage script to produce parametric meshes ?

theta2=pi;
F.x=width;
F.y=H.y+radius*sin(theta1);

//
tot_edge=n_top+n_bottom+n_left+n_right+n_arc;
if(tot_edge%2) {
("Odd number of edges detected. Adding one edge to top side."+endl).print();
n_top=n_top+1;

}
l1.bind(D,F); l2.bind(C,D); l3.bind(A,C); l4.bind(G,A);
l1.set_nodes(n_right,1.);
l2.set_nodes(n_top,1.);
l3.set_nodes(n_left,1.);
l4.set_nodes(n_bottom,1.);
a1.set_parameters(H,radius,theta1,theta2,F,G);
a1.set_nodes(n_arc,1.);

//
specimen.add(l1);
specimen.add(l2);
specimen.add(l3);
specimen.add(l4);
specimen.add(a1);
specimen.name=name;
specimen.element_type=eltype;
right.add(l1); right.name="right";
top.add(l2); top.name="top";
left.add(l3); left.name="left";
bottom.add(l4); bottom.name="bottom";
notch.add(a1); notch.name="notch";

//
specimen.remesh();

//
left.link(); right.link(); top.link(); bottom.link(); notch.link();
specimen.link();

//
master("save_as toto.mast");
specimen.mesh.name="toto.geof";
specimen.mesh.save();

}

• A very complex example : how to mesh a ’real’ gear, using involute curves. This
example makes an intensive use of many objects, and is thus very interesting to show the
possibilities of the coupling between zMaster and zLanguage.

void do_involute(int direction, VECTOR vx, VECTOR vy, double re,
double ri, int disc)

{
//

Z-set 3.41

How to use a Zlanguage script to produce parametric meshes ?

// Makes a involute curve
//

double theta,theta_max;
int i,nnode;

vx.resize(disc+1); vy.resize(!vx);
theta_max=1./ri*sqrt(re^2.-ri^2.);
("theta_max="+theta_max+endl).print();

//
if(direction==1) { vx[0]=ri; vy[0]=0.; }
else { vx[!vx-1]=ri; vy[!vy-1]=0.; }
for(i=1;i<!vx;i=i+1) {

if(direction==1) {
theta=theta_max/disc*i;
vx[i]=ri*(cos(theta)+theta*sin(theta));
vy[i]=ri*(sin(theta)-theta*cos(theta));

} else if(direction==-1) {
theta=-theta_max/disc*i;
vx[!vx-i-1]=ri*(cos(theta)+theta*sin(theta));
vy[!vy-i-1]=ri*(sin(theta)-theta*cos(theta));

} else ERROR("Unkown direction : "+direction);
}

}

void do_tooth_points(VECTOR r_vx, VECTOR r_vy, VECTOR l_vx, VECTOR l_vy,
double awidth, double re, double ri, int disc, double tm)

{
//
// Build all points needed to mesh a gear tooth.
//

VECTOR p;
MATRIX rot;
double alpha;
int i;

//
do_involute(1,r_vx,r_vy,re,ri,disc);
tm=acos(r_vx[!r_vx-1]);
do_involute(-1,l_vx,l_vy,re,ri,disc);

//
alpha=(awidth-2*tm)/2.;

//
rot.set_rotation(-(tm+alpha));
p.resize(2);
for(i=0;i<!r_vx;i=i+1) {

p[0]=r_vx[i]; p[1]=r_vy[i];
p=rot*p;
r_vx[i]=p[0]; r_vy[i]=p[1];

}
//

rot.set_rotation(tm+alpha);
p.resize(2);
for(i=0;i<!l_vx;i=i+1) {

Z-set 3.42

How to use a Zlanguage script to produce parametric meshes ?

p[0]=l_vx[i]; p[1]=l_vy[i];
p=rot*p;
l_vx[i]=p[0]; l_vy[i]=p[1];

}
}

void do_tooth(double tm, double awidth, double re, double ri,
int disc, double angle, ARRAY lines)

{
//
// Build the geometry of a gear tooth using lines
//

VECTOR r_vx,r_vy;
VECTOR l_vx,l_vy;
VECTOR p;
MATRIX rot;
int i,iline,jpoint;
ARRAY points;

do_tooth_points(r_vx,r_vy,l_vx,l_vy,awidth,re,ri,disc,tm);
rot.set_rotation(angle);
p.resize(2);
for(i=0;i<!r_vx;i=i+1) {

p[0]=r_vx[i]; p[1]=r_vy[i];
p=rot*p;
r_vx[i]=p[0]; r_vy[i]=p[1];

}
for(i=0;i<!l_vx;i=i+1) {

p[0]=l_vx[i]; p[1]=l_vy[i];
p=rot*p;
l_vx[i]=p[0]; l_vy[i]=p[1];

}
//

lines.resize(2*(!l_vx-1));
points.resize(2*(!l_vx));
jpoint=0;
for(i=0;i<!r_vx;i=i+1) {

points[jpoint].x=r_vx[i];
points[jpoint].y=r_vy[i];
jpoint=jpoint+1;

}
for(i=0;i<!l_vx;i=i+1) {

points[jpoint].x=l_vx[i];
points[jpoint].y=l_vy[i];
jpoint=jpoint+1;

}
//

jpoint=0;
iline=0;
for(i=0;i<!r_vx-1;i=i+1) {

lines[iline].bind(points[jpoint+1],points[jpoint]);
iline=iline+1;
jpoint=jpoint+1;

Z-set 3.43

How to use a Zlanguage script to produce parametric meshes ?

}
jpoint=jpoint+1;
for(i=0;i<!l_vx-1;i=i+1) {

lines[iline].bind(points[jpoint+1],points[jpoint]);
iline=iline+1;
jpoint=jpoint+1;

}
}

void do_gear(PAVING domain, int n_teeth, double awidth, double re,
double ri, int disc, int dea, int dia)

{
//
// Build the geometry of a complete gear
//

ARRAY<ARRAY<LINE>> all_lines;
ARRAY<ARC> arcs,other_arcs;
ARRAY<POINT> pts1,pts2,ppts1,ppts2;
double tm,wa,space,angle,alpha1,alpha2;
int i,itooth;
VECTOR p1,p2;

space=(2*pi-n_teeth*awidth)/n_teeth;
//

all_lines.resize(n_teeth);
other_arcs.resize(n_teeth);
arcs.resize(n_teeth);
pts1.resize(n_teeth);
pts2.resize(n_teeth);
ppts1.resize(n_teeth);
ppts2.resize(n_teeth);

//
for(itooth=0;itooth<n_teeth;itooth=itooth+1) {

("Tooth n. "+itooth+endl).print(); flush();
angle=2*pi/n_teeth*itooth;
do_tooth(tm,awidth,re,ri,disc,angle,all_lines[itooth]);
wa=(awidth-2*tm)/2.;
arcs[itooth].set_parameters(center,re,angle-wa,angle+wa,

ppts1[itooth],ppts2[itooth]);
arcs[itooth].set_nodes(dea,1.);

}
//

for(itooth=0;itooth<n_teeth;itooth=itooth+1) {
("Arc n. "+itooth+endl).print(); flush();
angle=2*pi/n_teeth*itooth;
alpha1=awidth/2.+angle;
alpha2=alpha1+space;
other_arcs[itooth].set_parameters(center,ri,alpha1,alpha2,

pts1[itooth],pts2[itooth]);
if(itooth==0) other_arcs[itooth].set_nodes(dia+1,1.);
else other_arcs[itooth].set_nodes(dia,1.);

}
//

Z-set 3.44

How to use a Zlanguage script to produce parametric meshes ?

domain.name="gear";
domain.element_type="c2d3";

//
for(itooth=0;itooth<n_teeth;itooth=itooth+1) {

for(i=0;i<!(all_lines[itooth])/2;i=i+1)
domain.add(all_lines[itooth][i]);

domain.add(arcs[itooth]);
for(i=!(all_lines[itooth])/2;i<!all_lines[itooth];i=i+1)

domain.add(all_lines[itooth][i]);
domain.add(other_arcs[itooth]);

}
domain.make_connectivity();
domain.link();

}

void main()
{

global POINT center;
VECTOR px,py;
double r_int,r_ext;
global double ang_t;
int d_i_arc,d_e_arc,di,nteeth;
double awidth;
PAVING domain;

// external and internal radius
r_ext=1.; r_int=.8;

// number of teeth
nteeth=15;

// number of edges on involute curves, external and internal arcs
di=5; d_i_arc=3; d_e_arc=2;

// angular width of a tooth
awidth=pi/12.;

// center of the gear
center.x=0.; center.y=0.;

//
do_gear(domain,nteeth,awidth,r_ext,r_int,di,d_e_arc,d_i_arc);
master("save_as mesh.mast");

}

Z-set 3.45

How to use a Zlanguage script in optimizer ?

How to use a Zlanguage script in optimizer ?

One can use zLanguagebase package inside an optimization loop. Let us consider the
following differential system :

∂χ

∂x
= B + A sin(x)χ(x)

The optimization problem to be solved is to find parametres A and B so that curve
χ = f(x) fits a predefined ”experimental” result.

First write a script solving this differential system for any parameter A and B (these
parameters are loaded from a file names ’solve.dat’) ,:

void main()
{

VECTOR vx,vy;
double ti,tf;
global double A,B;

data_file.load_globals("solve.dat");
runge.eps_r=.001;
runge.ymax_r=.001;
vy.resize(50);
vx.resize(vy.size());
ti=0.; tf=2.;
vy[0]=0.;
runge.integrate(derivative,ti,tf,vx,vy,vx.size());
data_file.output_vectors("solve.test",vx,vy);

}

void derivative(double time, VECTOR chi, VECTOR dchi)
{

dchi.resize(1);
dchi[0]=B+A*sin(time)*chi[0];

}

In file ’solve.dat.tmpl’, just put (as usual with zOptimizer) the unknowns :

A ?A
B ?B

And use the following input file (with ’Zrun -o’ command) to find A and B :

****optimize sqp
***files solve.dat
***shell Zrun -zpt opti.z7p 2>&1 > /dev/null

Z-set 3.46

How to use a Zlanguage script in optimizer ?

***values
A 5. min .5 max 50.
B 10. min 1. max 100.

***compare
g_file_file solve.test 1 2 solve.ref 1 2 weight 50.

****return

Z-set 3.47

How to use a Zlanguage script in optimizer ?

.1 An example using zLanguage/zMaster and zOptimiser

The goal of this problem is to optimize geometrical parameters of a turbine disk to lower
both mises equivalent stress and mises equivalent strain. The axisymmetric geometry, with
two unknown parameters A and B is the following :

30
 m

m

30
 m

m

15
 m

m
A

B

The mesh script file (named ’mesh.z7p’) is the following :

void main()
{

global double A,B;
double dl;
POINT a,b,c,d,ee,f;
LINE l1,l2,l3,l4,l5,l6;
LISET li;
DELAUNAY domain;
RENUMBERING renum;

data_file.load_globals("AB.dat");
//

dl=3.;
//

a.x=30.; a.y=0.;

Z-set 3.48

How to use a Zlanguage script in optimizer ?

b.x=a.x+120.; b.y=0.;
c.x=b.x; c.y=30.;
d.x=B+15.; d.y=A;
ee.x=B-15.; ee.y=A;
f.x=a.x; f.y=30.;

//
l1.bind(b,a); l2.bind(c,b);
l3.bind(d,c); l4.bind(ee,d);
l5.bind(f,ee); l6.bind(a,f);

//
l1.set_nodes(int(l1.length()/dl)+1,1.);
l2.set_nodes(int(l2.length()/dl)+1,1.);
l3.set_nodes(int(l3.length()/dl)+1,1.);
l4.set_nodes(int(l4.length()/dl)+1,1.);
l5.set_nodes(int(l5.length()/dl)+1,1.);
l6.set_nodes(int(l6.length()/dl)+1,1.);

//
domain.add(l1); domain.add(l2);
domain.add(l3); domain.add(l4);
domain.add(l5); domain.add(l6);
li.add(l1); li.name="bottom";

//
domain.link(); li.link();
domain.mesh.name="disk.geof";
domain.element_type="cax6";
domain.name="disk";
domain.remesh();
renum.renumbering(domain.mesh);
domain.mesh.save();

}

The file ’AB.dat.tmpl’ only contains :

A ?A
B ?B

The finite element input file (’mesh.inp’) is :

****calcul
***mesh
**file disk.geof

***resolution newton
**sequence

*time 100.
*algorithm eeeeee
*increment 1
*iteration 10

***bc

Z-set 3.49

How to use a Zlanguage script in optimizer ?

**impose_nodal_dof
bottom U2 0.0

**centrifugal ALL_ELEMENT (0. 0.) d2 1.e5 time
***material

*file mesh.inp
****return

***behavior linear_elastic
**elasticity

young 200000.0
poisson 0.3

***coefficient
masvol 1.e-6

***return

****post_processing
***local_post_processing
**elset ALL_ELEMENT
**output_number 1
**file integ
**process mises sig
**process mises eto

***global_post_processing
**output_number 1
**elset ALL_ELEMENT
**file integ
**process max sigmises
**process max etomises

****return

And the optimizer input file (’opti.inp’) is :

****optimize sqp
***files AB.dat
***shell
Zrun -B mesh.z7p
Zrun mesh
Zrun -pp mesh
./traite.csh

***values
A 30. min 16. max 49.
B 90. min 46. max 134.

***compare i_file_file mesh.post 1 mesh.ref 1 weight 50.
****return

The file ’mesh.ref’ is supposed to contain the following lines (it represents the ’objec-
tive’, ie the best mises value which is zero in this case) :

Z-set 3.50

How to use a Zlanguage script in optimizer ?

0.
0.

The shell script named ’traite.csh’ slightly transforms post processing result file to make
comparison easier :

#!/bin/csh
awk ’(NR==3)||(NR==6) { if(NR==6) fact=1.e5;

else fact=1.; printf("%f\n",$2*fact); }’ mesh.post > mesh.res

This optimization problem leads to the solution (A = 49., B = 46.).

Z-set 3.51

How to use a Zlanguage script in post processing ?

How to use a Zlanguage script in post processing ?

The main drawback in using zLanguage scripts is that zLanguage is an interpreted
language. It provides high functionality to dynamically detect runtime errors such as :
type checking, generic pointers, array bounds errors . . . But these checks require time to
execute : an interpreted script will never be as fast as the corresponding binary executable.

zLanguage syntax is very close to C++ syntax which is the language used to write ZSet.
All zLanguage objects are in fact only tiny wrappers to handle the underlying existing C++
classes. It is then pretty easy to write a C++ class, having a script. ZSet incorporates a
module which does this work automatically.

Let us suppose the the user has a working local post-processing script which computes
the Mises equivalent stress. It is possible to build a C++ file and then a dynamic loadable
library which will be automatically loaded by ZSet.

The starting script is :

ARRAY<string> input()
{

ARRAY<string> i;

i.resize(4); i[0]="sig11"; i[1]="sig22"; i[2]="sig33"; i[3]="sig12";
return(i);

}

ARRAY<string> output()
{

ARRAY<string> o;

o.resize(1); o[0]="ffmises";
return(o);

}

void initialize()
{

global double max_mises,min_mises;

max_mises=-MAX_DOUBLE; min_mises=MAX_DOUBLE;
cout<<"Initialization : \n";
cout<<"Max mises ="<<max_mises<<"\n";
cout<<"Min mises ="<<min_mises<<"\n";

}

void destroy()
{

global double max_mises,min_mises;

Z-set 3.52

How to use a Zlanguage script in post processing ?

cout<<"Max mises ="<<max_mises<<"\n";
cout<<"Min mises ="<<min_mises<<"\n";

}

void compute()
{

TENSOR2 sigma;
global double max_mises,min_mises;
double mises;

sigma.reassign(4,in,0);
sigma.add_sqrt2();
mises=sigma.mises();
if(mises<min_mises) min_mises=mises;
if(mises>max_mises) max_mises=mises;
out[0]=mises;

}

This script requires 7.8 seconds to execute on a medium sized 2D mesh (the real char-
acteristics of the mesh and of the computer doe not matter). This script is stored in a file
named post.z7p. The following lines go in a file named convert.inp :

****zpconv
***source_file post.z7p
***output_file A_post.c
***type local_post
***class_name APOST
***keyword z7plocalpost

****return

When the user launchs Zrun -zpconv convert, ZSet will analyze the script post.z7p
and will generate a C++ class in A post.c. This file can then be automatically compiled
and inserted into a dynalic library (exactly the same way that a user will generate a dynalic
library starting from some ZebFront source files).

The previous three stars commands are :

• ***source file : gives the name of the script to be converted

• ***output file : the C++ output file

• ***type : the kind of module to be produced.

• ***class name : the C++ class name. User can choose about all names.

• ***keyword : the keyword associated with the C++ class.

After the dynamic library is built, the user may use the local post processing named
z7plocalpost as every other post-processing criterions.

Z-set 3.53

How to use a Zlanguage script in post processing ?

NOTE : this converter is in a beta version ! Use it at your own risks . . .
And do not hesitate to contact ZSet developers for more informations.

The same post-processing execution (ie same problem, same computer) using the dy-
namic library (insted of the interpreted script) requires only 0.79 seconds (speed-up of a
factor 10).

Z-set 3.54

Chapter 4

ZebFront pre-processor

Z-set 4.1

ZébFront

ZébFront

Description:
The objective of the Zebfront pre-processor is to provide a means of reducing the technical
programming tasks involved in material models. This will hopefully encourage material
theorists to implement their models early in the development process. Resulting code
should be of high enough quality for final implementations as well and therefore provides
a general tool. Eventually, the pre-processor will be able to provide some symbolic math
to reduce the efforts necessary to program implicit integration methods.

Several applications are envisioned for the pre-processor, each giving a similar interface
(modeling language). As mentioned above, the main purpose is the creation of mate-
rial behaviors. This currently applies to simulation models and FEM material behaviors.
Soon, the preprocessor will be able to construct class definitions based on a generalized
template, thereby allowing the user to create whole class hierarchies for different applica-
tions. Implementation of the template method of class formatting involves some significant
modifications and influences largely the use of the @SubClass command. This command
should thus be considered as un-finished; a more complete version will be available shortly.

The basic functionality of the ZebFront program may be summarized by the following
figure:

ZebFront CORE
PROGRAM

UTILITIES
for reading /
parsing /
managing
syntax

APPLICATION BASE
CLASS

user_file.z

class USER : TYPE_OF_PROCESSOR {

};

C++ definitions
Preprocessor definitions

code using the preprocessor

C++ code for extra functions

PROCESSED CLASSES

BASE CLASS FOR

class for this application
ZebFront PROCESSOR

GENERATED USER
CLASS (NEVER SEEN)

C++

COMPILING

SYNTAX defined
representing the
application

The pre-processor is seen to be composed of a standard Zebulon base class supporting
the pre-processor mode, and a corresponding module in the pre-processor program defining
the syntax and directives which are allowed. ZebFront is therefore expandable through
the addition of these supporting pairs.

The user (model programmer) then writes a personalized model in a file suffixed by .z
which is the program source. This source file is a complete model definition, and does not
require any modifications to other program files. There is also no limit to the number of
.z files in a given user project.

Z-set 4.2

ZébFront

A model seen to be defined by a class definition, and code defining the implementation.
The class definition resembles a C++ class and requires that the class derive from a defined
class type, which specifies the class type which will be created. Note that different class
types may have very different syntax and rules. The allowable modes are summarized
below:

CODE DESCRIPTION
SIMUL MODEL Simulation model (page 4.6).

BASIC NL BEHAVIORPresumed non-linear FEM material behavior (page 4.8).

BASIC SIMULATORSimulation model derived from a BASIC NL BEHAVIOR (page 4.11).

Syntax:
% ZebFront [-o -d -h -od -g] problem ←↩

Bugs
• Debug numbering is not complete as far as the class def is concerned.

• There may be peculiarities in the syntax parsing... such as comma placement, differ-
ences in variable declaration order, etc. These are extremely important to report.

• The program sets all the internal variables in derivative. If not all the variables
are used, some C++ compilers will generate warning messages for this.

Z-set 4.3

Math Object Summary

Math Object Summary

Description:
This section briefly summarizes the use of math objects which are available to the ZebFront
program modules. These classes aid the mathematical programming greatly, and are at
least partially mandatory in that all input and output variables are stored with these
objects. The use of high-level utility classes is very beneficial to the program longevity
because it hides implementation assumptions. The main developers may thus optimize
personal code without ever touching the source. In fact, this principle applies to the
ZebFront methodology at every level.

CODE DESCRIPTION
VECTOR Array of double storage to be used as general vector storage; vectors

may be of any size, but do support some methods of a first order
tensor

MATRIX basic matrix class

SMATRIX square matrix class with some methods for a fourth order tensor

TENSOR2 second order tensor class

ARRAY<T> template for a list of objects; size must be given

DARRAY<T> double dimensioned array template

LIST<T> single dimensioned array which may be added to dynamically

• Size checking All objects verify the size equality between objects at each function
or operator call when the program is compiled in debug mode. For example, to use
an equality operator between two objects A and B, the size attributes of both A and B
must be equal. Sizes may always be adjusted using the resize methods. The syntax
of a resize method always parallels the creator syntax.

• Creators Objects usually may be created as local variables without parameters,
with a size attribute, or with using another object of the same type.

• Indexing The method of indexing differs between single dimension and two dimen-
sion entities. Single dimension entities VECTOR, TENSOR2, ARRAY<T>, and LIST<T> are
accessed using the [] operator as a normal C vector. Double dimensioned objects
use the form (i,j) where i and j are integers. This operators are defined inline,
and are thus as efficient as direct pointer access. The indexing implements bounds
checking however in debug mode.

• Sub-objects Math objects VECTOR, TENSOR2, and MATRIX may be sub-entities of
another math object. Sub-objects may be attached in their creation, or using the

Z-set 4.4

Math Object Summary

reassign method. The syntax for all objects follows the same convention for both
the creator and the reassign methods. This dictates that the first parameters of
the method begins with the size attribute as in the standard creator. The following
parameter is the object which is being attached onto, and the final parameters are
the location in the “host” object.

Some basic operators are summarized below:

CODE DESCRIPTION
! Size-of operator; returns tensor / vector / array sizes

^ Outside or cross product; two tensors multiplied returns a
SMATRIX

| Contracted product; returns a scalar

Z-set 4.5

SIMUL MODEL
Simulator model.h

SIMUL MODEL

Description:
The SIMUL_MODEL ZebFront class type is used for the simplest models, where a pure dif-
ferential model is given. One good application of this type of model is for verification of
user FEM models, or to speed simulations in an optimization procedure.

A model is defined by its “observable” variables which can be imposed as loading
within the simulator (although it is up to the model programmer to sort out different
loading conditions). In order to simulate different equations, “integrated” variables will
be used having been given the time (or pseudo-time) derivative functions. The observable
variables will be naturally part of the integrated variables, so their evolution is given in
the simulation routine according to the active loading (see below for example). Additional
variables may be output by assigning them “auxiliary” space in the class definition.

Syntax:
A summary follows of the pre-processor directives available in simulation models:

CODE DESCRIPTION
@Class declares a user-class

@Derivative explicit integration function calculating variable time derivatives

@UserRead extra read function to search user defined syntax

@UserOutput function for extra output which may be desired.

The class:
A model of type SIMUL_MODEL is more limited than other models in ZebFront. Only the
following commands sub-set of commands are available:

@class NAME OF CLASS : SIMUL_MODEL {
@Name class name;
@Coeff coeff, ..., coeffN;
@VarInt list;
@VarAux list;
@Observable list;
additional C++ code

};

In addition to the limitations of commands, the syntax of those available are reduced
as well. The above only permit comma separated lists of names to represent the data
members. The coefficients in the model file may also be only single (real) values.

Example:
The following is a complete example of a one dimensional model for a viscoplastic behavior.
Note that the syntax is simple and there are really no pre-defined utilities. The load array
specifies the variables which are given in the input file, and can be chosen from the variables
defined as @Observable in the class heading.

Z-set 4.6

SIMUL MODEL
Simulator model.h

//
// Viscoplasticity with one kinematic variable, 1d loading
//
@Class CNLV1 : SIMUL_MODEL {

@Coefs young, K, n R0, Q, b, C, D;
@VarInt eel, evcum, alpha, evi;
@VarAux X, R, sigeff, f;
@Observable sig, eto;

};

@Derivative {
eto = eel + evi;
sig = young*eel;
X = C*alpha;
R = R0 + Q*(1.0-exp(-b*evcum));
sigeff = sig-X;
f = fabs(sigeff) - R;
if (f>0.0) {

devcum = exp(n*log(f/K));
devi = sign(sigeff)*devcum;
if (C>0.0) dalpha = devi - devcum*D*X/C;

}

if (load[0]=="sig") deel = dglobal[0]/young;
else if (load[0]=="eto") deel = dglobal[0] - devi;

}

Z-set 4.7

BASIC NL BEHAVIOR
Basic nl behavior.h

BASIC NL BEHAVIOR

The principle functionality of behaviors in the Zebulon FEM mode may be summarized
by the following schematic:

Flux
tangent matrix
Var Int @ t+dtBehavior

Grad
Var Int @ t

integrate

derivative

calc_grad_f

ite
ra

te

strain_part

Here, the last FEM solution is at time t, which is to be advanced in the global solution
iterations to time t + dt. The ZebFront mode for FEM material behaviors therefore is
centralized for this functionality. The internal calling sequence will be such that a method
integrate will be called, which in turn may call several different methods. The ZebFront
may be used to support solely the integrate method, allowing the user to re-define the
entire model. Complicated multi-function programs may therefore be created, while taking
advantage of the programs coefficient and model variable management capabilities. More
often than not however, a model may be implemented more simply using the standard
integration formats.

A summary follows of the pre-processor directives available in material behaviors:

CODE DESCRIPTION
@Class declares a user-class

@SetUp method which is called before the calculation begins; one may set up
variable storage here for example

@Integrate user-integrate function; used for behaviors which are not using the stan-
dard Runge-Kutta or θ-method integration

@Derivative explicit integration function calculating variable time derivatives

@CalcGradF implicit integration function for the variable residual and Jacobian
matrix

@UserRead extra read function to search user defined syntax

If the user has selected the standard integration methods, the integrate method should
not be re-defined. The default will perform some internal set-up operations, and then
dispatch control to the integration method. Integration methods will be selected in the
user input file for each calculation using the *integration option under ***material
in ****calcul. Each method then calls back on the ZebFront source in the method
derivative or calc_grad_f if they have been defined. A model developer is not required
to define all integration methods, only the ones he wishes. ZebFront will generate auto-
matically default error messages for the methods not implemented.

Z-set 4.8

BASIC NL BEHAVIOR
Basic nl behavior.h

Standard methods:
The pre-processor defines a number of class methods which are defined only with pre-
processor directives, and without parameters. The absence of parameters allows the pre-
processor to change its implementation of the methods without affecting the user program
source. Different methods define a different set of variables depending on their application.

Pre-defined variables:
The class creation includes definition of several variables which will be kept up to date in
the program. Use of these variables remove dependence on the actual program internals,
and therefore assure compatibility with future versions of the code.

CODE DESCRIPTION
psz symmetric tensor (problem) size

usz unsymmetric tensor size

unit deviator multiplier s′ = unit σ

m tg matrix the tangent matrix to be returned

m flags behavior flags

Time ini initial time of the increment

Time time at the ending of the increment

Dtime increment of time over the increment

Gradiant-flux variables:
Previous versions of ZebFront used the reserved names grad, dgrad, and flux for the
imposed variable names. Now that several gradient-flux variables may be given for a
particular problem, these will be accessed using their names proper. Thus, for a program
with the grad/flux combination of eto/sig, one has the variables eto, deto, and sig
directly available.

By default (in the absence of a @Flux or @Grad command in the class declaration) the
flux will be a symmetric Cauchy stress tensor named sig, while the gradient will be the
symmetric small strain tensor eto. The names of these variables must be compatible with
the element specification in all applications.

Generated class:
The generated BEHAVIOR class will follow the generalized syntax:

***behavior behavior name modifier
**sub class type SUB CLASS

...
**model_coef

cname1 COEFFICIENT
...
cnameN COEFFICIENT

**user option
...

***return

Z-set 4.9

BASIC NL BEHAVIOR
Basic nl behavior.h

Example:
A class definition of the following type:

@Class PLASTIC_BEHAVIOR : BASIC_NL_BEHAVIOR {
@Name plastic;
@SubClass ELASTICITY elasticity;
@Coefs R0, Q, b;
@tVarInt eel;
@sVarInt epcum;
@tVarAux epi;

};

May accept the following input:

***behavior plastic_behavior
**elasticity isotropic

young 260000.
poisson 0.3

**model_coef
R0 130.
Q 20.0
b 500.0

***return

Z-set 4.10

BASIC SIMULATOR
Basic nl simulation.h

BASIC SIMULATOR

Description:
The BASIC_SIMULATOR ZebFront class type is used for FEM behaviors which are meant
to be run in the simulation mode as well. Classes of this type must be valid
BASIC_NL_BEHAVIOR classes, and require special code to calculate the mixed-mode loading
case, but also allow definition of yield surface functions.

Syntax:
The class declaration is the same as that for BASIC_NL_BEHAVIOR with some extensions.
No new class methods (main functions) are provided for the simulation mode.

The class definition for BASIC_SIMULATOR is the following:

@class NAME OF CLASS : BASIC_NL_BEHAVIOR, BASIC_SIMULATOR {
standard behavior options from page 4.12
@Criterion list;
additional C++ code

};

Resolving mixed flux-grad loading:
One of the main benefits of the simulator is the ability to solve mixed loadings exactly,
while displacement based FE solutions are approximate and require iterations in the non-
linear case (and therefore desiring a good tangent matrix calculation). The disadvantage is
a formulation must be made to solve the mixed rate loading. To address the later, special
methods are given in the BASIC_SIMULATOR base class for resolving such a difficulty (this
is in contrast to the solution in the class SIMUL_MODEL discussed on pages 4.6-4.7). Using
the notation f for the flux and g for the gradient, the following forms are allowed. See the
developers manual for a description of how these methods are implemented.

CODE DESCRIPTION
resolve flux grad(E, de, dg, de2) ḟ = E(ġ− ė− ė2)

resolve flux grad(E, de, dg) ḟ = E(ġ− ė)

Example:
Here’s an example of a combined FEM-simulator model with a criterion object.

@Class FEM_SIM_BEHAVIOR : BASIC_NL_BEHAVIOR, BASIC_SIMULATOR {
@Name example;
@Coefs E, poisson;
@Coefs R0, H, Q, b;
@Coefs alpha, beta, A, k, r;
@Coefs dmax;
@tVarInt eel;
@sVarInt evcum, D;
@sVarAux R,j0,j1,j2,chi;
@tVarAux evi;
@Criterion yield, damage;

};

Z-set 4.11

@Class

@Class

Description:
User behavior models are declared in a class definition which resembles a C++ class, in-
cluding special pre-processor directives. These directives always begin with a @ sign. It is
always possible to include C++ language code in the class definition, including variable and
method declarations.

The class creator is generated by the pre-processor, so that method is not allowed in the
class declaration. Manipulations are possible in the creator however by using the @SetUp
or @UserRead commands.

Syntax:
The basic form of a ZebFront class declaration is summarized below:

@class NAME OF CLASS : PROCESSOR TYPE {
@Name class name;
@SubClass type obj name;
@SubClass type obj name @Params param list;
@Coeff coeff, ..., coeffN;
@Coeff coeff size, ... ;
@Coeff list @Factor fact;
@Grad var size declaration;
@Flux var size declaration;
@sVarInt list;
@sVarAux list;
@sVarUtil list;
@Tags tag declarations
@Integrate
@Implicit
additional C++ code

};

The processor type defines the type of model which will be created, and therefore the
allowable syntax and the base class from which it is derived (as shown on page 4.2).

The parameters in the above syntax have the following meanings:

class name the name to be used in an input file to identify an object of this type. For
behaviors, this corresponds to the command ***behavior. The default name is the
class name in all lower case.

type a valid sub-class type. Sub-classes may in essence be any class which satisfies a
certain set of requirements1. Sub classes may not yet have integrated or auxiliary
variables; these classes are just used as utility equations with coefficients.

1As these requirements will soon change, no more description will be given... e-mail
foerch@nwnumerics.com if you have questions

Z-set 4.12

@Class

obj name the name to be used for the object instance. This name will result in an input
command with the same name.

param list The parameters to be sent to a sub-class read method. The default list
is the file, problem (tensor) size, and behavior. The default would be input as:
SubClass X x @Params file,psz,this;

Z-set 4.13

@Class

coeff a character name for a coefficient. Names must not be duplicated with other
variable names.

size a size specifier. Coefficients may be loaded as single values (no size),
as fixed dimension arrays using the syntax [x] where x is the desired
size, as variable diemsnioned entities using [0-N] for the size, or in terms
of another object using [!X] with X being another object. Constant or
other function values are also allowed, permitting the following two cases:
@sVarInt gamma [12]; @sVarInt gamma1 [get_gamma_size(1)]; where the method
get_gamma_size is defined in standard C++ within the class.

factor a factor to calculate which will be multiplied to the coefficient. This
may be any expression calculatable after the coefficients are loaded, such as:
@Coeff C @Factor 2./D; with D being another coefficient. The factor only ap-

plies the initial value of D however, and thus cannot be used for variable coefficient
interrelations.

s a size specifier. Sizes may be s for scalar variables, t for symmetric tensors, u for
unsymmetric tensors, or v for vectors2.

num is an optional size declaration. This size is the number of repeated instances
of the variable to be stored as an array. The size may either be an explicit num-
ber or use an indicator based on the number of a specific coefficient entered. For
example, if a coefficient C was given an internal variable associated to it may be
declared: @tVarInt alpha [!C]; from which variable are accessed as alpha[1],
to alpha[!C-1] or equally alpha[!alpha-1] (note that indexes start at 0.

list a comma separated list of object names. The syntax is the same as standard C++

variable list. See the end of this page for various examples. Each variable may be
given an optional size specification for variables to be stored in list format.

Example:
The examples here attempt to demonstrate some more complex combinations of the class
declaration. First is a FEM behavior for finite deformation. The gradiant variable is the
deformation gradiant F while the flux variable is the Cauchy stress zsig. The porgram can
use the default flux name of sig while it defines a non-symmetric tensor named F for F.

@Class BATHE_ROT : BASIC_NL_BEHAVIOR {
@SubClass ELASTICITY elasticity;
@Coefs K, n, R0, Q, b, C1, D1, C2, D2;
@Grad usz F;
@uVarInt Fp;
@sVarInt evcum;
@tVarInt alpha1,alpha2;

};

The following example class definition is more modular in nature. 3 This class uses
several of the behavior “bricks” which are standard in the Z7 behavior library. Also, the
coeffcient C is variable in number, while the coefficient D and variables X and alpha are
sized to match C. This allows the user to enter as many C terms as desired.

2vectors are not yet implemented
3$Z7PATH/calcul/zZfrontBehavior/ModularPlastic.z

Z-set 4.14

@Class

@Class MODULAR_PLASTIC_BEHAVIOR : BASIC_NL_BEHAVIOR {
@Name modular_plastic;
@SubClass ELASTICITY elasticity;
@SubClass CRITERION criterion;
@SubClass FLOW flow;
@SubClass ISOTROPIC_HARDENING isotropic;

@Coefs C [0-N] @Factor 1./1.5;
@Coefs D [!C];
@tVarInt eel, alpha [!C];
@sVarInt evcum;
@tVarAux X [!C], evi;
@tVarAux Xtot;
@tVarUtil m [!C];
@tVarUtil Xdot;

};

In one final example, a case of multiple gradiant flux variables is given. Here we have
a behavior designed to be compatible with a small deformation, icompressible element.

@Class ADIABATIC_INCOMP_PLASTICITY : BASIC_NL_BEHAVIOR {
@Name adiabatic_incompressible;
@SubClass ELASTICITY elasticity;
@SubClass ISOTROPIC_HARDENING isotropic;

@Grad tsz eto;
@Grad 1 press;
@Flux tsz sig;
@Flux 1 dvolu;

@Coefs pCp, chi, alpha_t;
@tVarInt eel;
@sVarInt epcum, T;
@tVarAux epi;
@Implicit

};

Z-set 4.15

@UserRead

@UserRead

Description:
This directive indicates that there are user defined tokens which must be added to the
model syntax. The ZebFront program provides a standard base of automated reading
and variable management, but it is sometimes desirable to add custom reading for more
complicated applications. It is preferential to use the default reading because that sets a
standard and reduces dependence on the code internals.

Syntax:

@UserRead {
C++ reading code

}

The routine enters with an ASCII_FILE named file, and the token string read named
str. The str parameter is a non-const STRING& object. Care must thus be taken to not
overwrite the string if the token is not a user defined one.

Example:
The following small example gives a hypothetical input where the model allows an external
file to be used for additional vector data, or the data to be input in the material file itself:

#define VERIF if (!file.ok) INP_ERROR(&str,&file.name);
@UserRead {

if (str=="**data_file") {
if (!data_fname) ERROR ("Multiple filenames");
data_fname = file.getSTRING_sl();
return TRUE;

} else if (str=="**localization") {
VECTOR tmp(3);
STRING ctl = file.getSTRING();
while (file.ok && ctl[0]!=’*’) {

tmp[0] = ctl.to_double();
tmp[1] = file.getdouble_sl(); VERIF;
tmp[2] = file.getdouble_sl(); VERIF;
loc.add(tmp);

} return TRUE;
} return FALSE;

}

**data_file is used to load a file name, and **localization will be used to load
vectors in the material file. The data file could be read in @SetUp routine if the
size of data fname is greater than zero. The total vector set will be the union of all
**localization inputs and what is read from the filename.

Z-set 4.16

@StrainPart

@StrainPart

Description:
This method is used to perform calculations after the local integration is finished. Normally,
there will be a number of auxiliary variables which may be desired and can be calculated
as a direct function of the new internal variable values. The material tangent matrix is
also required for the global solution, and this function may be used for that as well.

If the behavior has re-defined the method integrate @StrainPart has no relevance.

Syntax:
This command is a standard pre-processor method. The method does not define any of
the user variables (coefficients are of course available). Use the @SetVar command to set
all required variables.

Example:
The following example (from Plastic.z) is for a behavior using both explicit and implicit
integration.

@StrainPart {
@SetVar eel,epi;
epi = grad - eel;
flux = *elasticity*eel;
if (integration&LOCAL_INTEGRATION::THETA_ID) {

SMATRIX tmp(psz,f_grad,0,0);
if (Dtime>0.0) m_tg_matrix=*elasticity*tmp;
else m_tg_matrix=*elasticity;

} else if (m_flags&CALC_TG_MATRIX) m_tg_matrix=*elasticity;
}

Z-set 4.17

@Derivative

@Derivative

Description:
This method is used for explicit integration. The model will be required to furnish time
derivatives for all the VarInt variables as a function of the gradient rate and the current
VarInt values.

V̇ int = fn
(
ġtot,A

(
Vt

int

))
where g being the gradient variables. The program automatically initializes the gradient
under the name grad, and its time derivative named dgrad.

For each variable vname defined, there will be an associated allocated math object
named dvname. This object is attached appropriately to the integration variable vector
such that all calculated variable rates are to be assigned to these variables. The method
therefore has the gradient variable, all the current VarInt variables, and the dvname rate
variables active. Other variables may be activated using the @SetVar command.

CODE DESCRIPTION
tau double for the fractional time in

the increment

var total vector of the integrated
variables (const)

dvar vector to be filled with the vari-
able derivatives

dgrad time derivative of gradient vari-
ables; this is changed from the
standard definition which is the
increment of gradient

For finite element behaviors, after the behavior is integrated, assignment of the auxiliary
variables, calculation of the flux variable, flux, be made, and assignment of the tangent
matrix must be made. These calculations should be made in the @StrainPart method.

Example:
This is the derivative function for the first example header on page 4.14.

@Derivative {
double CC1=C1/1.5; double CC2=C2/1.5; double fact=1.0;
if (Fp.determin()<=0.0) { Fp=0.0; Fp[0]=Fp[1]=Fp[2]=1.0; }
if (Dtime>0.0) fact=(tau-Time_ini)/Dtime;

TENSOR2 Ft = F - ((1.-fact)*Dtime)*dF;

Z-set 4.18

@Derivative

TENSOR2 Fe = Ft*inverse(Fp);
TENSOR2 R(usz), U(psz); Fe.strain_partion(R, U);
TENSOR2 E = U.log_tensor();

sig = *elasticity*E;
TENSOR2 Xv1 = CC1*alpha1;
TENSOR2 Xv2 = CC2*alpha2;
double Rad = isotropic->radius(evcum);

TENSOR2 sprime = deviator(sig);
TENSOR2 sigeff = sprime-Xv1-Xv2;
double J = sqrt(1.5*(sigeff|sigeff));
double f = J - Rad;

if (f>0.0) {
TENSOR2 norm = sigeff*(1.5/J);

devcum = flow->flow_rate(evcum,f);
dFp = norm*devcum*Fp;

if (CC1>0.0) dalpha1 = devcum*(norm - (D1/CC1)*Xv1);
if (CC2>0.0) dalpha2 = devcum*(norm - (D2/CC2)*Xv2);

}
}

Z-set 4.19

@CalcGradF

@CalcGradF

Description:
This method is used for generalized midpoint implicit integration. The routine will be re-
quired to furnish the residual of incremental variable evolution equations, and the Jacobian
matrix of all the residual equations with respect to the internal variables.

∆χ = fn (∆gtot,A (χθ))

χθ = χini + θ∆χ

Rk = Fk(χθ)−F0

F(χθ, ∆χ) = F0

∆χk+1 = ∆χk + [∇Fk
θ]−1Rk

CODE DESCRIPTION
theta the θ value used for the

midpoint

f 0 vector of imposed variable
increments

f vec vector for the variable residual

f grad Jacobian matrix storage

chi vec variables calculated at θ

d chi increment of integrated
variables

CODE DESCRIPTION
f vec vnamei residual space for variable

vnamei

dvnamei dvnamej Jacobian space for the residual
equation of vnamei with respect
to the variable vnamej

Z-set 4.20

Chapter 5

Basic Tools

Z-set 5.1

Basic Tools

Basic Tools

Description:
The basic tools library provides a number of classes, templates, and functions which are
absolutely essential to the programming in Z-set, and which we feel are a big conveniance
to general programming as well.

Library:
These functions all all contained in the libraries libZmat base.so and libzTools.so on
Unix platforms, and in zmat base.dll on win32 platforms.

Classes:

ARRAY<T> An array class for general storage of fixed length data lists. The array can be
resized, but the user must copy the data back in manually.

CARRAY<T> An array with some comparison operators defined. Generally if the T class
has an == operator defined this class can be used.

LIST<T> This template is used for data items which need to be added and subtracted.
Note that the implementation is not a linked list. This is because in computational
work the item access operators must be efficient.

PLIST<T> A list automatically implementing a PTR<T> template on the stored item.
Destruction of all items is automatic.

BUFF LIST<T> A list with buffering of the data objects. Speed for adding many objects
is thus improved.

PTR<T> A template to use instead of just using pointers. Desruction is automatic, and
there is a lot of verification if ZCHECK is defined.

STRING a character string class.

ASCII FILE Class used for parsing all input files.

GLOBAL PARAMETER A class for serving up “parallel safe” and user adjustable global
paramters, which are typically default values.

Object Factory A set of defines which implements automatic linking of new objects
into the object-keyword lookup tables.

Read/Write Binary Utility functions for reading and writing Z-set platform independant
binary files.

Debug Prints the set of prn overload functions for outputting debug data when the
user launches with -debug.

Z-set 5.2

Arrays/Lists

Arrays/Lists

Description:
Array and List objects in Zebulon are made with templates. Lists are not chained lists but
rather an expandable version of the linear array. Addition/subtraction of objects therefore
costs more than chained lists, but random indexed access is much better. This corresponds
to the general needs of FEA programming where setup operations are normally done once,
and constitute a very small portion of the overall CPU use.

ARRAY

CARRAY
LIST PLIST

BUFF LIST

PARRAY

MARRAY

M2ARRAY

DARRAY

The base array classes are:

ARRAY the base template. It is basically a holder for a T* with a fixed size.

CARRAY this class can be used for objects which have the operator== defined.

PARRAY uses the PTR class so all objects held in the array are destroyed when the array
is deleted or goes out of scope.

MARRAY is for math arrays. It is inteded for classes with a resize method defined, so
the dimension of the array and all the objects in it can be set in one step.

The list templates are:

• LIST expands or contracts as objects are added or suppressed.

• PLIST uses the PTR template for all objects in the list.

• BUFF LIST Uses a buffer in the list, so additions are done more efficiently. Note this
uses more memory than is required.

Files:
The following include files relate to the array/list template library:

#include <Array.h>
#include <List.h>
#include <Buffered_list.h>

Z-set 5.3

Arrays/Lists

#include <Pointer.h>
#include <Marray.h>
#include <Darray.h>

Z-set 5.4

ARRAY<T>
Array.h

ARRAY¡T¿

Description:
As mentioned above, the ARRAY is the base class for these templates, and is essentially a
managed vector of objects.

template <class T> class ARRAY {
public :

ARRAY() : x(NULL), sz(0) {}
ARRAY(int n);
ARRAY(const ARRAY<T>& a);
ARRAY(int,T**);
virtual ~ARRAY();

const T& operator[](int rank);
T& operator[](int rank);

const T& last()const;
T& last();

const T& first()const;
T& first();

ARRAY<T>& operator=(const ARRAY<T>& a);
ARRAY<T>& operator=(const T& xxx);
int operator!() const;
void copy(ARRAY<T>& a)const;
const T* ptr()const;

virtual void resize(int n);
};

Class Use:
The use of an array will consist of an object delaration either as a class data mem-
ber or as a local variable, possibly one or more resize statements, and a variety of
statements manipulating the data within the array. An heuristic example could be:
class A { public : ARRAY<double> data; }; ... ARRAY<double>& funny(const ARRAY<double>& a) { ARRAY<double> b = a; b.first() = b.last(); // == b[0] = b[!b-1]; return b; }

One should note that this class is strict about bounds checking (in debug mode -
DZCHECK). This is to say, that performing equivilence of unlike sized arrays is an error,
as opposed to doing an automatic resize operation. The choice was made to be consistent
with overall program standards, which in tern have been stipulated for performence reasons.
Proper use will involve a resize operation such as:

void set_eq(ARRAY<USER_TYPE>& a, const ARRAY<USER_TYPE>& b)
{

/* if (!a != !b) */
a.resize(!b);
a = b;

}

The commented check for sizing is noted to be redundant because a similar check is
provided in the resize method.

Z-set 5.5

ARRAY<T>
Array.h

Note : the ARRAY template deletes the storage for the array itself. In the case that
the array is of dynamically allocated objects (pointers), the objects themselves will not be
deleted. Use the PLIST template in this case.

If the array size is zero, setting the array equal to another array will put the array to
the same size. Otherwise behavior is undefined (an assertion is hit with ZCHECK defined).

Creators and initialization:
The creators for an array object consist of an empty default constructor which initialized
the object to a zero size, a constructor taking an interger for the size (storage is allocated
to that size), and creation based on another array of like objects. The later is noted to
leave the input array unchanged (const).

Methods:

operator! returns the size of the array.

operator[] takes an integer as an index and returns the corresponding element of the
array. Please rebember that the arrays count from zero, and there is bounds checking
in debug mode.

first returns a reference or const reference to the first object in the array.

last returns a reference or const reference to the last object in the array; equivilent to
obj[!obj-1]; .

User Methods:

resize public method changing the size of the array. Storage is created for the given
number of objects, and the size attribute reassigned. If the new size is the same as
the old size, nothing is done.

copy takes an array of the same type and performs a resize operation to the size of
the accessing object, and calls equivilence for all elements in the passed array to the
corresponding elements in the current array. i.e. calling a.copy(b); is equivilent
to { b.resize(!a); b = a; } .

Z-set 5.6

CARRAY<T>
Array.h

CARRAY¡T¿

Description:
The CARRAY template may be used if the objects to be stored have the operator== defined.
This operator is used in the new member methods presented here for searching particular
objects.

template <class T> class CARRAY : public ARRAY<T> {
public :

CARRAY();
CARRAY(int n);
CARRAY(const ARRAY<T>& a);
CARRAY(const CARRAY<T>& a);
CARRAY(int,T**);
CARRAY<T>& operator=(const CARRAY<T>& n);
bool is_in(const T&)const;
bool is_in(const T&,int&)const;
int count_occurrence(const T&)const;
int first_occurrence(const T&) const;
bool operator==(const CARRAY<T>& t)const;

};

Creators and initialization:
This class is created and destroyed in an analogous fashon to the ARRAY class.

If the array size is zero, setting the array equal to another array will put the array to
the same size. Otherwise behavior is undefined (an assertion is hit with ZCHECK defined).

User Methods:

is in method used to check if a particular object is contained in an array (TRUE if it
is, FALSE otherwise). The method taking an integer reference will return the index
position of the first instance of this object. no further searching is performed.

count occurrence counts the number of occurences of a given object within the array.
For a CARRAY<int> this would return the number of elements which have the given
integer value (e.g. 5).

operator== operator checking that the values of one array are the same as in another
array. This will fail if the sizes are not the same, or if the objects are in differerent
orders.

Z-set 5.7

LIST<T>
List.h

LIST¡T¿

Description:

The list class is used for arrays of objects which may expand or contract dynamically.
Local optimizations are performed internally to avoid excesses in the creation or distruction
of memory, copying, etc. The class is very useful for both concrete data and object pointers.

template<class T> class LIST : public CARRAY<T> {
public :

LIST();
LIST(const LIST<T>&);
LIST(int n);

void add(const T& xx);
void add_to(const ARRAY<T>& xx);
bool suppress();
bool suppress_item(const T& xx);
bool suppress(int rk);
LIST<T>& operator=(const LIST<T>&);

};

Class Use:
As stated above, this class is used when an array of objects is to be intermittently added to
or subtracted from. As part of the local optimizations, a buffer size is defined, the default
size of which is given by DEFAULT_LIST_BUFFER_SIZE. For a given list object this buffer
size may be changed in order that a good compromise between memory efficiency and CPU
efficiency may be reached for a particular problem.

User Methods:

add adds an object to the list at the end.

add to adds the contents of a list to the end and re-sizes accordingly.

suppress Removes either the last item in the list, or the item indexed by the integer
paramter.

suppress item Removes the first occurence of the object given as a parameter. If this
item is a pointer, only the pointer is removed, while the object storage remains (lost)
in memory.

Z-set 5.8

PLIST<T>
List.h

PLIST¡T¿

Description:
This class provides a list of object pointers which will be destroyed after the list is deleted
which would normally be when it goes out of scope.

template<class T> class PLIST : public LIST< PTR<T> > {
public :

PLIST();
PLIST(const PLIST<T>& a);

virtual ~PLIST();
virtual void resize(int n);

void add(T* p);
bool suppress();
bool suppress(int rk);
CARRAY<T*> make_ptr_array();

};

Class Use:
This class is used as was the list object described above, except pointer objects are ex-
peceted and deleted automatically. On could do for instance:

class XX {
PLIST<STRING> names;

public :
virtual ~XX() { }
void add_name(const char* nm) { names.add(new STRING(nm)); }
...

};

Z-set 5.9

BUFF LIST<T>
Buffered list.h

BUFF LIST¡T¿

Description:
This template implements a list using memory buffering. The holder of data stored in the
list is allocated in chunks, so the whole list will not be copied each time an object is added.
The list uses memcopy for this as well.

This class is very useful for list manipulation within algorithms (temporary manage-
ment lists), but should normally be avoided in classes themselves if many instances of those
classes will be kept.

#define DEFAULT_BUFFERED_LIST_SIZE 8

template<class T> class BUFF_LIST : public CARRAY<T> {
public :

BUFF_LIST(int bsz=DEFAULT_BUFFERED_LIST_SIZE);
BUFF_LIST(const ARRAY<T>& a, int bsz=DEFAULT_BUFFERED_LIST_SIZE);
BUFF_LIST(const BUFF_LIST<T>& a, int bsz=DEFAULT_BUFFERED_LIST_SIZE);

void add(const T& xx);
void add_to(const ARRAY< T >& xx);
void add_at(int rank, const T& xx);

ZBOOL suppress();
ZBOOL suppress_item(const T& xx);
ZBOOL suppress(int rk);
BUFF_LIST<T>& operator=(const BUFF_LIST<T>&);
BUFF_LIST<T>& operator=(const LIST<T>&);
virtual void resize(int);

operator LIST<T>()const;
};

Class Use:
The class can be used as a LIST class. Note that it is not a LIST however but a CARRAY.
There is a conversion operator a BUFF_LIST can be passed as a LIST, but there will be
creation/copy employed.

Creators and initialization:
The BUFF_LIST can be created passing an optional buffer size, using an ARRAY or another
BUFF_LIST, both with an optional buffer size bsz. It is tempting to make the buffer size
large, but normally there is very little to gain by making it too big. Making it 10 will cut
the time spent in the copying/allocations by a factor of ten, which is normally enough to
make the CPU for that insignificant in the overall scheme of things. For another order
of magnitude difference the buffer would have to be 100, therby greatly increasing the
memory use.

add, add to, add at add members at the end, or at a specific location.

suppress remove data at index i, or remove an item. With no parameters it erases the
last object. The storage size remains at the largest size.

Z-set 5.10

PTR<T>
Pointer.h

PTR¡T¿

Description:
This template is used to encapsulate pointers, perform checks on their use with ZCHECK
defined, and delete the objects contained within automatically.

template <class T> class PTR {
public :

PTR();
PTR(T* p);
PTR(const PTR<T>& p);

~PTR();
operator T*();
void operator=(T* p);
void operator=(const PTR<T>& p);

T* operator->();
const T* operator->()const;

T* operator()();
const T* operator()() const;

T& operator*();
const T& operator*() const;

bool if_null() const;
bool if_not_null()const;
void erase();
void dont_delete();
void swap_pointer(PTR<T>&);

bool operator==(const PTR<T>& p)const;
bool operator==(const T *const& p)const;

friend bool operator==(const T*& t,const PTR<T>& p);
friend bool operator!=(const T*& t,const PTR<T>& p);

};

Class Use:

The class can be used as a regular pointer (and there is no performance penalty for
doing so). If the PTR already contains an object, it will issue an error with ZCHECK defined
if a new pointer is assigned to it.

an example use:

class XX {
PTR<MYCLASS> task;

public :
XX() { task=new MYCLASS; }
virtual ~XX() { }

Z-set 5.11

PTR<T>
Pointer.h

};

MYCLASS* tmp = task();
MYCLASS& tmp2 = *task;

if (task.if_not_null()) task->do_task();

Methods:

operator() returns the pointer contained within.

operator* returns the data pointed to by the pointer.

if null tells if the pointer held is NULL (which it is until something is set in the PTR).

if not null tells if the pointer held is not NULL.

erase delete the pointer and reset it to NULL.

dont delete flags the class to skip the auto-deletion (which can cause a problem if the
data gets deleted elsewhere).

swap pointer swaps pointers between PTR objects.

Z-set 5.12

ZBOOL
Bool.h

ZBOOL

Description:
The boolean type is confusing in C++ because some compilers have defines for it, some have
a built in type for it (the standard now) and some have nothing for it. This is pricipally
a problem with the rate at which compiler vendors have implemented the cutting edge of
C++, and too be portable in todays environments, another solution must be made. For
Zebulon versions post summer 1999, there is a class implemented ZBOOL.

#include <Zbool.h>

#ifndef TRUE
#define TRUE 1

#endif
#ifndef FALSE

#define FALSE 0
#endif

class ZBOOL {
public :

ZBOOL();
ZBOOL(int b);
ZBOOL(const ZBOOL &b);

virtual ~ZBOOL();

operator int()const;
ZBOOL operator!()const;
ZBOOL operator&&(ZBOOL b)const;
ZBOOL operator||(ZBOOL b)const;
ZBOOL operator&&(int b)const;
ZBOOL operator||(int b)const;
ZBOOL operator==(int in)const;

};

Class Use:

Use the ZBOOL type when it must be clear that a value can only be true or false. This
is most important for function calls which return a success/fail status, or a flag paramter
is given to select on/off type behavior. Using an integer for these applications is endlessly
confusing.

Example:
The following is a function declaration which uses a boolean parameter whether to issue
an error with default true. The function returns if it is ok or not.

ZBOOL calculate_stuff(DATA& dat, ZBOOL issue_error=TRUE);

Z-set 5.13

STRING
Stringpp.h

STRING

Description:
Utility class to encapsulate character string data as was described by Stroustrup, but with
a particular character of the Z7 library. In particuar, the class provides may methods
to assist the Z7 text file parsing, and will cooperate with the ASCII FILE class. STRING
objects are limited to 255 characters (sorry).

class STRING {
public :

static const STRING EMPTY;

STRING();
STRING(const char* buf_in);
STRING(const STRING& str_in);
STRING(char c_in):

STRING& operator=(const STRING& str_in);
STRING& operator=(const char* buf_in);
STRING& operator=(char c_in);

STRING& operator+=(const STRING& str_in);
STRING& operator+=(const char* buf_in);
STRING& operator+=(const char c_in);

int operator!()const;
const char* operator()()const;
char& operator[](int i);
const char& operator[](int i)const;

int operator==(const STRING& str_in)const;
int operator!=(const STRING& str_in)const;
int operator==(const char* buf_in)const;
int operator!=(const char* buf_in)const;

char& first();
const char& first()const;

char& last();
const char& last()const;

STRING& cut_out(char);
STRING& cut_out(const char*);

char* locate(char);
char* locate(const STRING&);
char* locate(const char*);
STRING& locate_and_cut(char c_in);
STRING& locate_and_cut_after(char c_in);
STRING& locate_and_cut_before(char c_in);

STRING& clear_space(void);
STRING& clear_extra_space(void);

Z-set 5.14

STRING
Stringpp.h

void remove_all(char);

ZBOOL if_int()const;
ZBOOL if_double()const;

int to_int()const ; //
double to_double()const ; //

ZBOOL start_with(const STRING&)const;
ZBOOL end_with (const STRING&)const;

friend STRING operator+(const STRING& str1,const STRING& str2);
friend STRING operator+(const STRING& str1,const char* buf_in);
friend STRING operator+(const char* buf_in,const STRING& str2);
friend STRING operator+(const STRING& str1,const char c_in);
friend STRING operator+(char c_in,const STRING& str2);
friend int strn_cmp(const STRING& str1,const STRING& str2, int n);
friend int strn_cmp(const STRING& str1,const char* buf_in, int n);
friend int strn_cmp(const char* buf_in,const STRING& str2, int n);
friend ostream& operator<<(ostream& stream,const STRING& str);
friend istream& operator>>(istream& stream,STRING& str);
friend void write(ostream&,const STRING&);
friend void read(istream&,STRING&);
friend void toupper_(STRING& str);
friend void tolower_(STRING& str);

STRING getSTRING();
double getdouble();
int getint();

};

Class Use:

The STRING class facolitates the handling of string data. Generally the value of a string
will be set directly, or as input from an ACII FILE object. Some simple creations are shown
below:

STRING tmp = "Hello world";
cout << tmp << " has "<<!tmp<<" characters in it"<<endl;
const char* ptr = tmp();

More examples are given below.

Creators and initialization:
Creation of a STRING object may use the default constructor which initilizes the string
to be equivilent to "", and has a length of zero. Otherwise, the string object may be
initialized using another STRING, or a const char* pointer. These laster two creations
perform a string copy of the character data into an initialized buffer.

Inquiries:

operator []

Z-set 5.15

STRING
Stringpp.h

operator !

operators ==, != classical implementations to be used for comparison of the entire
string with another string object. The entire string must be equivilent for a return
value greater than zero.

operator () provides a pointer to the character storage for the string. kept for com-
patibility... the cast operators eliminate use of this method.

operator const char* cast to a const char pointer.

operator char* cast to a char pointer.

if int, if double verifies if the string is compatible with either integer or double
format.

start with, end with Used to check if the string either begins or ends respectively
with a given character string.

strn cmp equivilent to the standard c function, but re-defined to use the STRING objects.
The return value is the difference between the first n characters of the two given string
objects (a value of 0 means no difference).

locate returns a pointer to the start of the first instance of a particular character, or
string of characters contained in the string object. A return of NULL is given when
the inquary is not found in the string.

User Methods:

cut out, locate and cut, locate and cut after, locate and cut before

clear space, clear extra space

to int, to double

remove all

operator<<, >>

read, write

toupper , tolower

Examples:

Here is an example of changing a filename extension in a string:

STRING new_name=fzebulon;
if(new_name.locate(".geof")) {

*(new_name.locate(’.’))=0;
new_name=new_name+".geo";

}

Z-set 5.16

STRING
Stringpp.h

Here is an example of parsing data from a string, which would take for example a
command like "print lp -d tek contour.ps":

bool POSTSCRIPT_DRAWING_AREA::do_command(STRING cmd)
{ STRING orig = cmd;

STRING str = cmd.getSTRING();
if (str == "print") {

STRING lpr = cmd.getSTRING();
STRING nm = cmd.getSTRING();
for (;cmd.ok;) {

STRING tmp = cmd.getSTRING();
if (cmd.ok) {

lpr += " "+nm;
nm = tmp;

}
}
STRING sendc = lpr+" "+ofile;
system(sendc());
unlink(ofile());

}
...

Z-set 5.17

ASCII FILE
File.h

ASCII FILE

Description:

This class is used to manange input ASCII text files in a generalize fashon, and using the
other utilities in the standardized Zebulon library. The class derives from Zifstream. This
later provides automatic management for parallel implementations, including buffering so
seaks and rewinds are not expensive.

class ASCII_FILE : public Zifstream {
public :

const STRING& name;
const bool& ok;

ASCII_FILE(bool set_default=BOOL_TRUE);
ASCII_FILE(const char *const name,

ZFWHERE w=ZLOCAL,
bool set_default=BOOL_TRUE);

virtual ~ASCII_FILE();

void open(const char* const, ZFWHERE w=ZLOCAL);
void try_to_open(const char* const, ZFWHERE w=ZLOCAL);
void close();

int get_next_char();
void add_character(int);
void remove_character(int);
bool is_eol_char(int);

void add_comment_char(int);
void remove_comment_char(int);
bool is_comment_char(int);

void add_separator_char(int);
void remove_separator_char(int);
bool is_separator_char(int);

void empty_line();

void locate(const STRING& criterion);
void locate(const char* criterion);
void locate_until_word_starts_with(const char*,const char*);
void locate_next(const STRING& criterion);
void locate_next(const char* criterion);
void locate_next_until_word_starts_with(const char*,const char*);
void locate_begin_line_next(const char*);
void locate_begin_line(const char*);
void locate_at_level(int,const STRING&);
void locate_next_at_level(int,const STRING&);

void skip_until_word_start_with(const STRING&);

Z-set 5.18

ASCII FILE
File.h

char get_char();
int getint();
STRING getSTRING();
double getdouble();
double getnumeral();
VECTOR getVECTOR(int vector_size);
VECTOR getVECTOR();
STRING getline();
STRING getSTRING_sl();
double getdouble_sl();
double getnumeral_sl();
int getint_sl();

void back(void); // goto to previous position
void rewind(void);
streampos get_position();
void goto_position(streampos);
void goto_position_and_set_previous_pos(streampos);
void get(LIST<int>&);
void get(ARRAY<int>&,int);

friend istream& operator>>(istream&,STRING&);

void make_from(STRING data);
void make_from(const LIST<STRING>& data);

};

Class Use:

The use of this class will generally involve a local variable declaration or class data member
declaration, after which an open operation is performed, followed by various file manipulations, and
finally a close operation.

The following loop is provided as a typical example of reading Zebulon input files:

void read_file(const STRING& data_name)
{ ASCII_FILE input;

input.try_to_open(data_name());
if (input.ok==FALSE) ERROR("cannot open file: "+data_name);

for(;;) {
str=file.getSTRING();
if (str.start_with("**")) { file.back(); break; }
else if (str=="*my_command") {

...
}
else if (str=="*add_val") {

val = file.getdouble();
if (!file.ok) DBL_REQ(val, file);

}
else INPUT_ERROR("Unknown command: "+str);

}
}

Z-set 5.19

ASCII FILE
File.h

Much more complicated parsing is however possible with the ASCII_FILE class, including
changes in seperator, comment character, and so on.

Data members:

name visible data member giving a STRING name for the file.

ok boolean member indicating the status of the file. The value of ok is for the last command
access to the file.

Creators and initialization:
The ASCII file class can be created in two different ways. The first is with only one parameter
which defaults to TRUE. This parameter will inidicate that the standard Z7 definitions for comments,
seperators, etc will be implemented.

open

try to open

close

Internal adjustment:
These methods manipulate the way the file reads characters, comments, and tokens. By default the
comments are % and #. The seperation characters are (white space) , (comma) and ; (semi-colon).

add character, remove character add and remove characters from the allowable string char-
acters.

add comment char, remove comment char add and remove what is considered a comment. Com-
ments cause all which remains on a line to be ignored.

add separator char, remove separator char manipulate the seperation characters. These
define the boundaries for queries such as getSTRING().

set vector key Used to set the VECTOR delimiters. For instance to change the default values:

set_vector_key(’[’,’]’);

Searching and parsing:
These methods allow you to skip around in a file, and get pieces of data from it. The design is
obviouly catored to the needs of parsing Zebulon input data files.

empty line clear and skip past whatever is left on a line.

skip until word start with, locate, locate until word starts with, locate next,
locate next until word starts with, locate begin line next,
locate begin line various searching methods. Note that global “find first from the file
start” operations are discouraged.

get char, getSTRING, getdouble, getnumeral get a value of the specified type. If the type
is not found (i.e. a double with no .) the file position does not change from before the call,
and ok is set to FALSE.

getVECTOR Get a vector with a given dimension dim. A VECTOR is an array of double delimited
by two characters that can be defined by the user using set_vector_key. The defaults values
are (and). For instance

(04 0.5 0.7).

can be read be using getVECTOR(3)

Z-set 5.20

ASCII FILE
File.h

getSTRING sl, getdouble sl, getnumeral sl, getint sl similar except the data must be
on the same line as the last read token (use is generally discouraged).

getline get the whole line to the next return char, white space included.

get Is used to read a list of int. If nb is not equal to 0, the function tries to read exactly nb
int. Otherwise it reads as many int as possible.

File Positioning Methods:

back go back to position before last read.

rewind obvious.

get position, goto position, goto position and set previous pos set position markers
and skip around using them.

Z-set 5.21

GLOBAL PARAMETER
Global parameter.h

GLOBAL PARAMETER

Description:
This class gives a way of safely having global variables in Zebulon (where they are necessary).

class GLOBAL_PARAMETER {
public :

GLOBAL_PARAMETER(const char*);
virtual ~GLOBAL_PARAMETER();
virtual void set_default_value()=0;
virtual void write()const=0;
virtual void set_value(const char*)=0;
void* value();

};

class INT_PARAMETER : public GLOBAL_PARAMETER {
public :

INT_PARAMETER(const char*);
virtual ~INT_PARAMETER();
virtual void set_default_value();
virtual void set_value(const char*);
virtual void write()const;

};

Also:

DOUBLE_PARAMETER
STRING_PARAMETER
ADJ_INT_PARAMETER // adjustable int parameter
ADJ_DOUBLE_PARAMETER // adjustable double parameter

Class Use:

an example use:

static ADJ_DOUBLE_PARAMETER mesh_fusion("Mesh Fusion",1.e-3);

double crit = GPDOUBLE("Mesh Fusion");

GPDOUBLE("Mesh Fusion") = dialog->get_text_field("Mesh Fusion").to_double();

Z-set 5.22

Defines

Defines

All compiler dependant #ifdefs should be grouped into “classifications” of compiler types, so
the instance of machine specifics is localized to one file. For example, some compilers require that
template functions be inline, others require that they are not. For this, a define for INLINE is given
in Defines.h and one can select the appropriate value for each compiler there only. Afterward
one can use INLINE for all templates, and know that the value is correct. Other examples are
INCLUDE_TEMPLATE_C_FILE and DETAILED_OPERATORS_REQUIRED.

The file contains the following at the time of this writing (March 1999).

#if (__GNUC_MINOR__>=6)
#define USE_EXPLICIT_TEMPLATES

#define MK_P_LIST(a) \
template class PTR< a >; \
template class PLIST< a >; \
template class PARRAY< a >; \
template class LIST< PTR< a > >; \
template class CARRAY< PTR< a > >; \
template class ARRAY< PTR< a > >; \
template class ARRAY< a* >; \
template class CARRAY< a* >; \
template class LIST< a* >;

#define MK_LIST(a) \
template class LIST< a >; \
template class CARRAY< a >; \
template class ARRAY< a >;

#endif

#if defined HPUX
#else
#define INCLUDE_TEMPLATE_C_FILE
#endif

#ifdef __GNUG__
#define INLINE inline

#elif defined __GNUC__
#define INLINE

#elif defined HPUX
#define INLINE

#else
#define INLINE inline
#define DETAILED_OPERATORS_REQUIRED

#endif

#if defined ibm || defined _WIN32
#else
#define FCNTL_IN_SYS

Z-set 5.23

Defines

#endif

Z-set 5.24

Object Factory

Object Factory

Description:
The object factory is not used as a class (although there is a class there), but rather using several
preprocessor #defines which “install” and object type and a string name associated with it.

Methods:

DECLARE OBJECT(base, object, name) Add a new class to the object factory creatable classes.
No quotes are given.

Create object(base, str) create an object using a tring for the desired “type.”

Class Use:

The class can be used as a regular pointer (and there is no performance penalty for doing so).
If the PTR already contains an object, it will issue an error with ZCHECK defined if a new pointer is
assigned to it.

an example declaration use for a new class:

class MY_BC : public BC {
public :

MY_BC();
virtual ~MY_BC() { }
void initialize(ASCII_FILE& file);

};

DECLARE_OBJECT(BC, MY_BC, the_name_for_my_bc);

The class could be read with (a rather typical format):

if (str=="*bc") {
str = file.getSTRING();
BC* tmp = Create_object(BC, str);
if (tmp==NULL) INPUT_ERROR("a BC type is required, got:"+str);
tmp->initialize(file);
its_bc.add(tmp);

}

Z-set 5.25

Read/Write Binary

Read/Write Binary

Description:
Different operating systems have different internal storage for fundimental multi-byte data types
(i.e. int, long, float, double). The difference is in the byte order from least to most significant bytes
in the storage word, and is also known as big endian and little endian properties of a CPU/OS.
Zebulon stores all its binary data files in big endian format, using the routines of this section to
handle conversions for different OS types.

void read_int(int* i, istream& fd);
void read_long(long* i, istream& fd);
void read_float(float* i, istream& fd);
void read_double(double* i, istream& fd);

void read_nint(int* i, int n, istream& fd);
void read_nlong(long* i, int n, istream& fd);
void read_nfloat(float* i, int n, istream& fd);
void read_ndouble(double* i, int n, istream& fd);

void write_int(const int* i, ostream& fd);
void write_long(const long* i, ostream& fd);
void write_float(const float* i, ostream& fd);
void write_double(const double* i, ostream& fd);

void write_nint(const int* i, int n, ostream& fd);
void write_nlong(const long* i, int n, ostream& fd);
void write_nfloat(const float* i, int n, ostream& fd);
void write_ndouble(const double* i, int n, ostream& fd);

void read_real_long(long* i, istream& fd);
void read_real_nlong(long* i, int n, istream& fd);
void write_real_long(const long* i, ostream& fd);
void write_real_nlong(const long* i, int n, ostream& fd);

void read_real_double(double* i, istream& fd);
void write_real_double(const double* i, ostream& fd);
void read_real_ndouble(double* i, int n, istream& fd);
void write_real_ndouble(const double* i, int n, ostream& fd);

Methods:

read/write int read/write int from/to file.

read/write long read/write from file an int and put it or get it from a long.

read/write float read/write float from/to file.

read/write double read/write from file a float and put or get it to/from a double.

read/write long read/write from file a double.

read/write double read/write from file a double.

Z-set 5.26

Debug Prints

Debug Prints

Description:
The Print.h file defines many functions which can be called to help in debugging. For Z-mat, this
may be the only way to safely debug a user routine within a running ABAQUS problem. The prn
statments output to a file named OUT by default. The prints will only output if the -debug switch
was given to Zebulon, or a ***debug command is given in the Z-mat input file.

void prn(STRING s, const TENSOR2& tt);
void prn(STRING s, const VECTOR& tt);
void prn(STRING s, const MATRIX& ss);
void prn(STRING s, const DMATRIX& ss);
void prn(STRING s, const ARRAY<float>& ss);
void prn(STRING s, const ARRAY<STRING>& ss);
void prn(STRING s, const double& ss, int r=0);
void prn(STRING s);
void prn(STRING s, int s2);
void prn(STRING s, const SCALAR& ss, int r=0);

void prn2(int, STRING, const TENSOR2&);
void prn2(int, STRING, const VECTOR&);
void prn2(int, STRING, const MATRIX&);
void prn2(int, STRING, const DMATRIX&);
void prn2(int, STRING, const ARRAY<float>&);
void prn2(int, STRING, const ARRAY<STRING>&);
void prn2(int, STRING, const double&, int);
void prn2(int, STRING);
void prn2(int, STRING, int);
void prn2(int, STRING, const SCALAR&, int);

Class Use:

an example use:

prn("+++++ NL_M_TLE_B_SD::integrate +++");

prn("ret flux",curr_mat_data()->flux());
prn("ret vint",curr_mat_data()->var_int());
prn("ret vaux",curr_mat_data()->var_aux());

prn("select id:"+itoa(select_id)+" reset:"+itoa(reset));

Methods:

prn put a variable data out with a lavel.

prn2* do a prn output if the flag id given as the first parameter is in the value passed after
-debug.

Z-set 5.27

Debug Prints

Globals:

extern STRING PRN FLE NAME the output file name (file is opened after first prn statement).

extern int DeBuG if non-zero prn output will be done. prn2 output will be done if flag&DeBuG
is non-zero, where flag is the 1st parameter passed to the prn2 statement.

prn2* do a prn output if the flag id given as the first parameter is in the value passed after
-debug.

Z-set 5.28

Visible

Visible

Description:
This file has a pre-processor define which makes some data members when a protected but world
visible data member is required. The owning class is the only one capable of actually changing the
value of the variable, but the world can see and use a constant alias for it.

#define visible(type,var) \
private : type _ ## var; \
public : const type& var

#define visible_protect(type,var) \
protected : type _ ## var; \
public : const type& var

Class Use:
The following example is from the ASCII FILE implementation:

class ASCII_FILE : public Zifstream {
int mode_opening;
visible(STRING,name);
visible(bool,ok);
visible(int,level);
LIST<int> loop_level;

...

The typical creator would then be (remember to order the creations as they were declared in
the class definition):

ASCII_FILE::ASCII_FILE(bool _set_default) :
name(_name),
_ok(FALSE), ok(_ok),
_level(-1),level(_level),
cr_read(FALSE)

{ is_temp_file = 0;
if(_set_default) set_default();
set_eol_char();

}

Z-set 5.29

Utility functions

Utility functions

Description:
Utility function relating to strings-math obj’s etc. this file helps reduce dependancies between file.h
and Vector.h and shortens code particularly with tensor names.

void tens_name (ARRAY<STRING>& str, int st, int len, const STRING& prefix);
void tens_name_no_us(ARRAY<STRING>& str, int st, int len, const STRING& prefix);
void vector_name(ARRAY<STRING>& str, int st, int len, const STRING& s);

void output_names(const ARRAY<STRING>& str);
void output_names(const ARRAY<STRING>& str, int& zebaba_index);

void Get_dir_content(const char*,LIST<STRING>&);
void Select_extension(const ARRAY<STRING>&, LIST<STRING>&, const char*);

ZBOOL split(const STRING&,char,STRING&,STRING&);

tens name, tens name no us get a list of tensor names given a prefix, tensor size len and
starting position in the string array str. str must be pre-sized to greater than st+len. Shear
components have and underscore in the name for symmetric tensors in calls to tens_name,
but not for tens name no us.

vector name similar to tens name but for vectors.

Z-set 5.30

Environment

Environment

Description:

Z getenv.h:

char *zebu_getenv(const char *name)

zebu getenv Used in the place of getenv for non-unix platforms.

Z-set 5.31

Chapter 6

Mathematical Tools

Z-set 6.1

Math Tools

Math Tools

Description:
These classes and functions provide the basis for a mathematical library with the specific interest
of continuum mechanics.

Library:
These functions all all contained in the libraries libZmat base.so and libzTools.so on Unix
platforms, and in zmat base.dll on win32 platforms.

Classes:

FUNCTION The function class is a means for the user to enter in interpreted functions of any
number of variables.

MATRIX The matrix class is a 2 dimensional matrix of double values. The implementation is
intended for relatively small sizes.

SMATRIX Square matrix (not symmetric). This class includes extra functions, and can also act
as a 4th order tensor. Z8.2 and later versions prefer use of the TENSOR4 class.

DMATRIX Diagonal matrix. Any off diagonal terms are ignored.

TENSOR2 2nd order tensor class.

VECTOR Vector class for general array of double uses and also acts as a first order tensor. Z8.2
and later versions prefer use of the TENSOR1 class.

Z-set 6.2

FUNCTION
Function.h

FUNCTION

Description:
The FUNCTION class is used for interpreted functions. The function can either be created from an
ASCII_FILE or with a STRING.

class VARIABLE {
public :

STRING name;
double value;

VARIABLE();
~VARIABLE();

VARIABLE& operator=(const VARIABLE &v);
int operator==(const VARIABLE &v);

};

class FUNCTION {
public :
enum FUNC_ERROR { OK=0, NC_PAR=1, NO_PAR=2 ,

SYN=3, B_NAG=4, B_FSY=5, TFA=6,
B_ASS=7,E_EXI=8};

int narg;
LIST<VARIABLE> l_var;
STRING algebraic;

FUNCTION();
FUNCTION(const FUNCTION&);

static FUNCTION* read(ASCII_FILE&);
static FUNCTION* make(const STRING&);

virtual ~FUNCTION();

ZBOOL operator==(const FUNCTION& fin);

int analyze(const STRING& al,ZBOOL _issue_error=FALSE) ;
double compute(int &err,ZBOOL _issue_error=FALSE);
double compute();
double compute(ARRAY<double>&);
double compute(VECTOR&);
double compute(double);
double compute_derivative(int,int &err,ZBOOL _issue_error=FALSE);

double& get_var(STRING&);
void check_and_get_vars(ARRAY<STRING>&,ARRAY<double*>&);

void fOut(void);

};

Z-set 6.3

FUNCTION
Function.h

Class Use:

instances of FUNCTION can be created easily using the read or make methods.

Z-set 6.4

FUNCTION
Function.h

Example:
The following example is taken from the nset transform class for the batch mesher. Here a list of
functions can be entered, and the functions are expected to be defined using variables named x y
or z. When the functions are evaluated therefore these values must be set in the function, and then
the function evaluated (see second code snipit).

//
// Read a bunch of functions & put them in a list.
//
for (;;) {

STRING tmp = file.getSTRING();
file.back();
if (tmp[0]==’*’) break;
STRING f=file.getline(); file.back();
flist.add(FUNCTION::read(file));
cmd_lines.add(f);

}
...

double NSET_TRANSFORM::eval_func(const VECTOR& v, FUNCTION& f)
{ int vsz = !v;

for (int j=0;j<!(f.l_var);j++) {
VARIABLE &va=f.l_var[j];
double val=0.;

if (va.name=="x") val=v[0];
if (va.name=="y") if (vsz<2) val=0.; else val=v[1];
if (va.name=="z") if (vsz<3) val=0.; else val=v[2];
va.value=val;

}
double ret = f.compute();
return ret;

}

Data members:
The following data members can be used from a function.

narg number of arguments which should be passed to the function.

l var storage of the variables which are used in the function.

algebraic copy of the algebreic expression of the function.

Methods:

read, make create and initialize a function object using the given ASCII_FILE or STRING object.
The analyze method is called for both with issue_error set to TRUE.

analyze parse and otherwise digest a given string as the basis of the function definition.

compute calculate the function.

Z-set 6.5

MATRIX
Matrix.h

MATRIX

Description:
This class is a standard mathematical utility for matrix data. It is meant for relatively small matrix
sizes (i.e. not a finite element stiffness matrix).

An important aspect of this class is its ability to support sub-objects attached to a location
within the matrix. The figure below demonstrates the indexing and creation of matrix objects.

m

n

i

j

5.0 w

h

j

i

mat(i,j) = 5.0;

// mat.n==12 mat.m==6

MATRIX mat(12,6); MATRIX sub(h,w,mat,i,j);

Caution: the matrix class uses the ! operator to get the total size. It also uses indexing with
parenthesis such as A(10,2) instead of using the [] operators as is used elsewhere.

class MATRIX : public MATH_OBJECT {
public:

enum LC { _LINE_, _COLUMN_, _DIAGONAL_ };
const int& n; // number of lines
const int& m; // number of columns

MATRIX();
MATRIX(int width,int height);
MATRIX(int width,int height,const double* data_storage);
MATRIX(const MATRIX&);
MATRIX(const DMATRIX& dm);
MATRIX(int width,int height,const MATRIX& master,int start_n,int start_m);
~MATRIX();

void resize(int,int);

Z-set 6.6

MATRIX
Matrix.h

void reassign(int n, int m,const MATRIX&, int start_n, int start_m);
void set(const MATRIX&); // resize and copy

double& operator()(int i, int j);
const double& operator()(int i, int j) const;

int operator!() const { return m*n; }

int operator==(const MATRIX& m);

MATRIX& operator=(const MATRIX&); // copy the data
MATRIX& operator=(double c);
MATRIX& operator=(const DMATRIX&);
MATRIX& operator += (const MATRIX&);
MATRIX& operator -= (const MATRIX&);
MATRIX& operator *= (double);
MATRIX& operator /= (double);

MATRIX& add_all_element(double);
MATRIX& add_to_diagonal(double);

MATRIX& operator=(const TENSOR2&);
MATRIX& operator=(const VECTOR&);
MATRIX& operator+=(const TENSOR2&);
MATRIX& operator+=(const VECTOR&);
MATRIX& operator-=(const TENSOR2&);
MATRIX& operator-=(const VECTOR&);

friend ostream& operator<<(ostream&,const MATRIX&);
friend istream& operator>>(istream&,MATRIX&);

friend MATRIX operator*(const MATRIX&,const MATRIX&);
friend MATRIX operator*(const MATRIX&,double); // m*d
friend MATRIX operator*(double,const MATRIX&); // d*m

friend MATRIX operator/(const MATRIX&,double); // m/d
friend MATRIX operator^(const VECTOR&,const VECTOR&); // Mij=v1i*v2j

friend MATRIX operator+(const MATRIX&,const MATRIX&);
friend MATRIX operator-(const MATRIX&,const MATRIX&);

friend MATRIX transpose(const MATRIX& mat);
friend SMATRIX expand_out(const SMATRIX& in);
friend SMATRIX expand_in (const SMATRIX& in);

friend void _read_(MATRIX&,Zfstream&);
friend void _write_(const MATRIX&,Zfstream&);

};

Class use:
The matrix object is a concrete type for storing and performing operations on matrix data. See
below for some examples.

Z-set 6.7

MATRIX
Matrix.h

Sizing, access, and setup:

resize Resize the matrix. All exisiting data is lost. If the matrix was a sub- of something else,
this association is lost.

reassign re-sets the matrix to be a sub-entity. It is possible to have a “stand-alone” matrix in
use, and re-assign it to be a sub of something else.

set resizes and sets the values of another matrix to the current one. example: a.set(b);

operator()(int i, int j) it is the index operator. Access an element with this (e.g. a(3,4)
= 5.0;)

operator!() returns the total storage size mn.

Manipulation:

add all element Adds a value to all elements in a matrix.

add to diagonal Adds a value to the diagonal of a matrix. There is an assertion that the matrix
be square.

transpose transpose a matrix, with resize and transfer of data.

Other methods:

expand out make a 5 × 5 (resp. 9 × 9) matrix out of a 4 × 4 (resp. 6 × 6) matrix so that it is
consistent with the definition of TENSOR2. For instance if you have a 6×6 matrix and want to
multiply it by a 3D non–symmetric tensor, operator(const SMATRIX\&,const TENSOR2\&)
will give a size mismatch; in order to solve the problem create first a new matrix using
expand_out and then multiply titemexpand in make a 4 × 4 (resp. 6 × 6) out of a 5 × 5
(resp. 9× 9) matrix; similafr use as expand_out

read , write

Hacker notes:

The storage for the matrix class uses a double dimensioned analogue to that used for the vector
and tensor classes.

Z-set 6.8

SMATRIX
Matrix.h

SMATRIX

Description:
This class is an implementation of a square matrix. The class also acts as a 4th order tensor in
versions before Z8.2. Many of the creators are duplicated from MATRIX to avoid ambiguity (the
compiler requires this), and to add assertions regarding its square property.

class SMATRIX : public MATRIX {
public :

SMATRIX();
SMATRIX(int ni);
SMATRIX(int ni,const double* x);
SMATRIX(const SMATRIX& mi);
SMATRIX(const MATRIX& mi);
SMATRIX(int n,const MATRIX&, int start_n, int start_m);

void resize(int n);
void reassign(int n,MATRIX&, int start_n, int start_m);

int operator==(const SMATRIX& m);
int operator==(const MATRIX& m);

SMATRIX& operator=(const MATRIX& mi);
SMATRIX& operator=(const SMATRIX& mi);
SMATRIX& operator=(double c);
SMATRIX& transpose();
SMATRIX& add_diagonal(double d);
double determin() const;

int gauss_solver(const VECTOR& b, VECTOR& u,bool error=FALSE)const;
int gauss_solver2(const VECTOR& b,const VECTOR& u,VECTOR&,VECTOR&,bool error=FALSE)const;

SMATRIX& inverse(double&);
SMATRIX& inverse();
SMATRIX& inverse(double&,bool&);
SMATRIX& inverse(bool&);

SMATRIX& operator += (const SMATRIX& mi);
SMATRIX& operator -= (const SMATRIX& mi);
SMATRIX& operator *= (double d);
SMATRIX& operator /= (double d);

static const SMATRIX& unity(int size);

friend SMATRIX& tXAX(const MATRIX& X, const SMATRIX& A, SMATRIX& B);
friend SMATRIX& tXAXs(const MATRIX& X, const SMATRIX& A, SMATRIX& B);

friend SMATRIX operator^(const TENSOR2& m1,const TENSOR2& m2);
friend void symmetrize(SMATRIX& mat);

static void eigen(const SMATRIX& in, VECTOR& vals, SMATRIX& vecs);
};

Z-set 6.9

SMATRIX
Matrix.h

Manipulation:

determin Returns the determinant of the matrix. The ,matrix is unchanged.

gauss solver,gauss solver2 Solve Ku = b returning 1 if successful, 0 otherwise. The bool
indicates if an error message (e.g. null pivot) should be issued within the function. Normally
it is better to handle that in the calling routine.

inverse

SMATRIX& SMATRIX::inverse(double&,bool&) Member, returns this
SMATRIX& SMATRIX::inverse(bool&) Member, returns this
SMATRIX inverse(const SMATRIX&,bool&) friend
SMATRIX inverse(const SMATRIX&,double&,bool&) friend
SMATRIX& SMATRIX::inverse(double&) Member, returns this
SMATRIX& SMATRIX::inverse() Member, returns this
SMATRIX inverse(const SMATRIX&) friend
SMATRIX inverse(const SMATRIX&,double& friend

The double& is the computed determinant. The bool& argument has two purposes: (1) as
entry it indicates if the program should be stopped in cases of failure (TRUE), (2) as output
it indicates is the inversion has succeded (TRUE)

unity static function returning a reference to a SMATRIX of a given size with one on the diagonal,
and zero elsewhere. This is for very lazy programmers; don’t use it.

tXAX,tXAXs Optimized multiplications for a XT AX multiplication. The value is returned in the
3rd parameter B. The tXAXs case is further optimized for symmetric matrices.

operator^ outside product of two tensors. This case is acting like a 4th order tensor. Depreciated
after version 8.2.

Z-set 6.10

DMATRIX
Matrix.h

DMATRIX

Description:
This class is for situations where a MATRIX object is called for, but the specific use only has values
on the diagonal.

class DMATRIX : public SMATRIX {
public :

DMATRIX();
DMATRIX(int);
DMATRIX(const DMATRIX&);
DMATRIX(const TENSOR2&);
DMATRIX(int n,const MATRIX&, int start_n, int start_m);

void resize(int);
DMATRIX& inverse();
DMATRIX& inverse(double&);
DMATRIX& inverse(bool&);
DMATRIX& inverse(double&,bool&);
double& operator[](int i);
const double& operator[](int i)const;
DMATRIX& operator=(const TENSOR2&);
DMATRIX& operator=(double);
DMATRIX& operator=(const DMATRIX&);
friend MATRIX operator*(const MATRIX& m1,const DMATRIX& m2);
friend MATRIX operator*(const DMATRIX& m1,const MATRIX& m2);
friend DMATRIX operator*(const DMATRIX&,const DMATRIX&);
friend DMATRIX operator*(const DMATRIX&,double);
friend DMATRIX operator*(double,const DMATRIX&);
friend VECTOR operator*(const DMATRIX&,const VECTOR&);
friend VECTOR operator*(const VECTOR&, const DMATRIX&);
friend SMATRIX operator*(const DMATRIX&,const SMATRIX&);
friend SMATRIX operator*(const SMATRIX&,const DMATRIX&);
friend DMATRIX inverse(const DMATRIX&);
friend DMATRIX inverse(const DMATRIX&,double&);
friend DMATRIX inverse(const DMATRIX&,bool&);
friend DMATRIX inverse(const DMATRIX&,double&,bool&);

};

Z-set 6.11

TENSOR2
Tensor2.h

TENSOR2

Description:
The class TENSOR2 is used for manipulating second order tensor data. The class includes many
methods and verifications specific to tensorial operations. This class should be used without excep-
tion for data which is known to be tensorial. If the general statement of a particular data entity
is not known to be tensorial, but a special case uses it as such, one can place a tensor object as a
sub-tensor on either a MATRIX or VECTOR

Conventions on second order tensors are as follows:
— 1D tensors (size 3) t11

t22
t33

— 2D tensors (size 4 or 5)

symmetric

t11
t22
t33√
2t12

 non–symmetric

t11
t22
t33
t12
t21

— 3D tensors (size 6 or 9)

symmetric

t11
t22
t33√
2t12√
2t23√
2t31

 non–symmetric

t11
t22
t33
t12
t21
t23
t32
t31
t13

class TENSOR2 : public MATH_OBJECT {

public :
TENSOR2();
TENSOR2(int n);
TENSOR2(const TENSOR2&);
TENSOR2(const VECTOR&);
TENSOR2(const SMATRIX&,int);
TENSOR2(const MATRIX&,int);
TENSOR2(int sz,const VECTOR&,int start);
virtual ~TENSOR2();

virtual void resize(int n);
virtual void reassign(int sz,const VECTOR&,int start);
virtual void reassign(int sz,double*,int start);

int operator!(void) const { return size; }

double& operator[](int i);
const double& operator[](int i)const;

Z-set 6.12

TENSOR2
Tensor2.h

TENSOR2& operator= (const TENSOR2&);
TENSOR2& operator= (double);
TENSOR2& operator= (const SMATRIX&);
TENSOR2& operator= (const MATRIX&);
TENSOR2& operator= (const VECTOR&);
int operator==(const TENSOR2& t);

TENSOR2& operator+=(const TENSOR2&);
TENSOR2& operator-=(const TENSOR2&);
TENSOR2& operator*=(const TENSOR2&);
TENSOR2& operator*=(double);
TENSOR2& operator/=(double);
double operator| (const TENSOR2& t)const;
TENSOR2& transpose(void);
double determin(void) const;
TENSOR2& inverse();

double trace(void)const;
TENSOR2& deviator(void);
double mises(void) const;

TENSOR2 FtF(void) const;
TENSOR2 FFt(void) const;
int size_sym(void) const;
int size_nonsym(void) const;

friend WIN_THINGIE TENSOR2 operator+(const TENSOR2&, const TENSOR2&);
friend WIN_THINGIE TENSOR2 operator-(const TENSOR2&, const TENSOR2&);
friend WIN_THINGIE TENSOR2 operator*(const TENSOR2&, const TENSOR2&);

friend WIN_THINGIE TENSOR2 operator*(const TENSOR2&,double);
friend WIN_THINGIE TENSOR2 operator*(double,const TENSOR2&);
friend WIN_THINGIE TENSOR2 operator/(const TENSOR2&,double);

friend WIN_THINGIE TENSOR2 operator*(const SMATRIX&, const TENSOR2&);
friend WIN_THINGIE TENSOR2 operator*(const TENSOR2&, const SMATRIX&);

friend WIN_THINGIE TENSOR2 operator*(const DMATRIX&, const TENSOR2&);
friend WIN_THINGIE TENSOR2 operator*(const TENSOR2&, const DMATRIX&);

friend WIN_THINGIE TENSOR2 syme(const TENSOR2&);
friend WIN_THINGIE TENSOR2 antisyme(const TENSOR2&);
friend WIN_THINGIE TENSOR2 to_5_9(const TENSOR2&);
friend WIN_THINGIE TENSOR2 rotate_tensor(const TENSOR2&,const TENSOR2&);
friend WIN_THINGIE double norm(const TENSOR2& t);
friend WIN_THINGIE double trace(const TENSOR2& t);
friend WIN_THINGIE double triaxiality(const TENSOR2&);
friend WIN_THINGIE int t2code(const TENSOR2& t1,const TENSOR2& t2);

friend WIN_THINGIE ostream& operator<<(ostream&,const TENSOR2&);

static TENSOR2 transpose(const TENSOR2&);

Z-set 6.13

TENSOR2
Tensor2.h

static TENSOR2 inverse(const TENSOR2&);
static TENSOR2 deviator(const TENSOR2&);

static const TENSOR2& unity(int n);
static const TENSOR2& one(int n);
static const SMATRIX& Jmat(int);
static const SMATRIX& Kmat(int);
static int give_symmetric_size(int dim);
static int give_nonsymmetric_size(int dim);
static int convert_to_symmetric_size(int tensor_size);
static int convert_to_nonsymmetric_size(int tensor_size);
static bool allowed_size(int n);

double I1()const;
double I2()const;
double I3()const;

double J2()const;
double J2(TENSOR2& dJ2_dt)const;
double J3()const;
double J3(TENSOR2& dJ3_dt)const;

double ijjkki()const;
double ijjkki(TENSOR2& dsIII_dt)const;

void strain_partion(TENSOR2& r, TENSOR2& u)const;
void strain_partion_left(TENSOR2& v, TENSOR2& r)const;
TENSOR2 eigen_vecs(TENSOR2& evals)const;
TENSOR2 log_tensor()const;
TENSOR2 exp_tensor()const;
TENSOR2 pow_tensor(double d)const;

void eigen(VECTOR& vals, TENSOR2& vecs)const;
SMATRIX mkmat()const;
friend WIN_THINGIE void cross(TENSOR2& tout, const VECTOR& v1, const VECTOR& v2);

};

inline TENSOR2 transpose(const TENSOR2& t) { return TENSOR2::transpose(t); }
inline TENSOR2 inverse(const TENSOR2& t) { return TENSOR2::inverse(t); }
inline TENSOR2 deviator(const TENSOR2& t) { return TENSOR2::deviator(t); }

TENSOR2 d_determ(const TENSOR2& t);
VECTOR operator*(const TENSOR2&,const VECTOR&);
TENSOR2 dp1_dsig(const TENSOR2& princip, const TENSOR2& sig);

Class Use:

Creators and initialization:

Operators:

Z-set 6.14

TENSOR2
Tensor2.h

operator| contracted product d = aijbij with summation on indicies.

operator outside product Mijkl = aijbkl

operator* product tik = aijbjk returns a non-symmetric result.

operator! number of independant components of the tensor (i.e. the size of stored variables).

operator[] index operator. Accesses the individual components in order as described above,
with index starting with zero.

User Methods:

inverse returns t−1 with the tensor remaining constant.

trace returns a double value for t11 + t22 + t33

deviator return

Hacker Notes:

The internal optimized storage for this class uses a fixed size of 9 for the allocation proceedure.

Z-set 6.15

VECTOR
Vector.h

VECTOR

Description:
This class is used for “vectors” of doubles. This is not meant to be a vector as defined in mechanics,
which is instead defined in the class TENSOR1 (vector is a 1st order tensor).

class VECTOR : public MATH_OBJECT {
public:

VECTOR() : size(0), v(NULL) { }
VECTOR(int n,int ist=0);
VECTOR(const VECTOR& vv,int ist=0);
VECTOR(int n ,double x,int ist=0);
VECTOR(int sz, const VECTOR&,int start);
VECTOR(const ARRAY<double>& a,int ist=0);
VECTOR(const TENSOR2&,int ist=0);
virtual ~VECTOR();

virtual void resize(int n);
virtual void resize(int n,int ist);
virtual void reassign(int length, const VECTOR&, int start_pos);

int operator!()const { return size; }

double& operator[](int i);
const double& operator[](int i)const;

double& first();
const double& first()const;
double& last();
const double& last()const;

double* ptr();
const double* ptr();

void sort(int, int);
void sort();

VECTOR& operator=(const VECTOR&);
void set(const VECTOR&);
VECTOR& operator=(double c);
VECTOR& operator=(const TENSOR2& t);
VECTOR& operator=(const ARRAY<double>& a);

VECTOR& operator+=(const VECTOR&);
VECTOR& operator-=(const VECTOR&);
VECTOR& operator*=(double);
VECTOR& operator/=(double);

int operator==(const VECTOR& vec_in)const;
int operator!=(const VECTOR& vec_in)const;

friend double operator|(const VECTOR&, const VECTOR&);
friend VECTOR operator+(const VECTOR&, const VECTOR&);

Z-set 6.16

VECTOR
Vector.h

friend VECTOR operator-(const VECTOR&, const VECTOR&);
friend VECTOR operator*(double,const VECTOR&);
friend VECTOR operator*(const VECTOR&,double);
friend VECTOR operator/(const VECTOR&,double);
friend VECTOR operator*(const MATRIX&,const VECTOR&);
friend VECTOR operator*(const VECTOR&,const MATRIX&);
friend VECTOR operator*(const SMATRIX&,const VECTOR&);
friend VECTOR operator*(const VECTOR&,const SMATRIX&);
friend VECTOR operator*(const DMATRIX&,const VECTOR&);
friend VECTOR operator*(const VECTOR&,const DMATRIX&);
friend ostream& operator<<(ostream&, const VECTOR&);

friend void _write_(const VECTOR&,Zfstream&);
friend void _read_ (VECTOR&,Zfstream&);

double max_component(int &rank)const;

friend void normalize(VECTOR&);
friend void max_normalize(VECTOR&);
friend double norm(const VECTOR& v);
friend double max_absolute_component(const VECTOR&,int& i);

friend double max_absolute_component(const VECTOR&);
friend ZBOOL if_colinear(const VECTOR&, const VECTOR&);

friend VECTOR vectorial_product(const VECTOR&,const VECTOR&);
};

Class Use:

Methods:

resize resize the vector.

reassign attach the vector a a sub- on aother vector.

Z-set 6.17

Chapter 7

Base classes for Material Behaviors

Z-set 7.1

MATERIAL PIECE
Material piece.h

MATERIAL PIECE

Description:

This class is used as the base for all material behaviors, and also the sub-classes used in materials
programming. The use of this class provides many useful pre-defined services for the management
of coefficients, internal and auxiliary variables, and other MATERIAL PIECE objects.

class MATERIAL_PIECE {
protected :

int vint_index, vaux_index, flux_index, grad_index;
int _dim,_tsz, _utsz;
MATERIAL_PIECE* its_boss;
EXTERNAL_PARAMETER_VECTOR curr_ext_param;
MAT_DATA* curr_mat_data;

public :
LIST<STORED_VARIABLE_SPEC*> local_vars;

MATERIAL_PIECE();
MATERIAL_PIECE(MATERIAL_PIECE*);
MATERIAL_PIECE(MATERIAL_PIECE*,int);
void initialize(MATERIAL_PIECE* boss); // connect
void initialize(MATERIAL_PIECE* boss,int dim); // connect
MATERIAL_PIECE(const MATERIAL_PIECE& svs_in, MATERIAL_PIECE* boss); // copy

virtual MATERIAL_PIECE* copy_self(MATERIAL_PIECE*);
virtual ~MATERIAL_PIECE();

MATERIAL_PIECE& operator=(const MATERIAL_PIECE& svs_in);
void make_curr_ext_param_recursive(int size);

bool depends_on(const STRING&)const;

virtual void add_name_prefix_recursive(const STRING& sin);
virtual void set_name(const STRING& sin);
virtual const STRING& name();
void rename_vars(const STRING&);

virtual void attach_all(MAT_DATA&);
virtual void attach(VECTOR& chi);
virtual void attach(VECTOR& chi, VECTOR& d_chi);
virtual void update_var_aux();
virtual void set_var_int_to_var_int_ini();
virtual void set_var_aux_to_var_aux_ini();

virtual bool if_constant_coefs()const;
virtual bool calc_coef();
virtual int calc_material(double);

virtual void setup(int& flux_pos, int& grad_pos, int& vi_pos, int& va_pos);
virtual void output_var_names(int flags)const;
virtual int default_output_variables(LIST<STRING>& names,

Z-set 7.2

MATERIAL PIECE
Material piece.h

LIST<STRING>& options);
virtual int rank_of_variable(const STRING&) const;

//
// Find variable, with optimization now (12/22/98) the key classes
// are all destroyed in this class
//
LIST<MATERIAL_PIECE_VARIABLE_KEY*> variable_keys;
LIST<MATERIAL_PIECE_VARIABLE_KEY*> flux_var_keys;
LIST<MATERIAL_PIECE_VARIABLE_KEY*> grad_var_keys;
LIST<MATERIAL_PIECE_VARIABLE_KEY*> vint_var_keys;
LIST<MATERIAL_PIECE_VARIABLE_KEY*> vaux_var_keys;
MATERIAL_PIECE_VARIABLE_KEY* find_key(const char* what, MP_TYPE type,

LIST<MATERIAL_PIECE_VARIABLE_KEY*>& where_to_search);

//
// These are actually mutable const.. with the keys being mutable
//
STORED_VARIABLE_SPEC* get_var(const char* what)const;
STORED_FLUX* get_flux_var(const char* what, bool give_err=TRUE)const;
STORED_GRAD* get_grad_var(const char* what, bool give_err=TRUE)const;
STORED_VINT* get_vint_var(const char* what, bool give_err=TRUE)const;
STORED_VAUX* get_vaux_var(const char* what, bool give_err=TRUE)const;

virtual STORED_VARIABLE_SPEC* output_get_var(const STRING& what)const;
const double& get_param(const STRING& what, MDAT_WHEN when=MDAT_CURR)const;

int int_sz()const { return int_var_sz; }
int aux_sz()const { return aux_var_sz; }
int int_pos()const { return int_var_pos; }
int aux_pos()const { return aux_var_pos; }
int bb_sz() const { return(bb_var_sz); }

enum BEHAVIOR_LEVEL { FIRST, NEXT, TOP };
virtual BEHAVIOR* find_behavior(BEHAVIOR_LEVEL top_level=FIRST)const;
MATERIAL_PIECE* give_boss()const { return its_boss; }
void impose_boss(MATERIAL_PIECE* bin);

int tsz()const { return _tsz; }
int utsz()const { return _utsz; }
int dim()const { return _dim; }

virtual void setup_name(STRING class_type, STRING stub);
virtual STRING get_next_name_for(STRING class_type);
virtual int get_next_index_for(STRING class_type);

virtual int index_size(); // INDEXES
virtual void set_flux_index(int idx);
virtual void set_grad_index(int idx);
virtual void set_vint_index(int idx);
virtual void set_vaux_index(int idx);

int get_flux_index()const { return flux_index; }

Z-set 7.3

MATERIAL PIECE
Material piece.h

int get_grad_index()const { return grad_index; }
int get_vint_index()const { return vint_index; }
int get_vaux_index()const { return vaux_index; }

DECLARE_ASK;
HIERARCHY_BASE;

friend void add_var(LIST<STORED_VARIABLE_SPEC*>& var, const MATERIAL_PIECE* mp);

virtual bool do_command(STRING msg);
];

Model Use:

The use of MATERIAL PIECE is forced for all classes deriving from BEHAVIOR. Generally this
will only have consequence if the user wants to know specific information about the varaible vector
sizes, or needs to overload the default methods to do specialized setup or optimization. The
class is designed such that behaviors may be created very quickly while allowing substantial later
modifications to optimize. The ease of programming often comes from the automated handling of
other sub-objects of type MATERIAL PIECE.

Generally sub-classes used in behavior programming should be derived from this class if any of
the following are true:

• The class has internal, auxiliary, flux, or gradient variables specific to the class. Examples
could be a hardening model with an internal variable or a thermal heating with temperature
coupling with the spacial problem.

• The class has coefficients of type COEFF. The MATERIAL PIECE class will automatically
update the coefficients every time the BEHAVIOR method calc local coefs is called.

• The class will have other sub-classes with the above classifications.

Setup of member data may be initialized either in the class creator, or the setup method called
by the BEHAVIOR class during initialization. The later is perhaps preferable, as the complete
problem object set will have been created at this point. If the setup method is overrided, it is
essential to call the base implementation.

In your integration methods, the methods set var int to var int ini and set var aux -
to var aux ini should be used in place of manipulating those vectors themselves. The reason is
encapuslating behaviors may have updated variables affected by the copy. These local methods
only copy the portion of vectors which belong specifically to the behavior.

Error messages should only be issued using the standardized ERROR MESSAGER routines.
Please remember to assign the err name member to identify the current class to the user.

Data members:

tsz is the symmetric tensor size to be used. This variable is available as a utility for the different
material pieces. Note that although the variable is globally writable, there should be no
reason to do so.

its boss is a pointer on the MATERIAL PIECE class which created the current object. The top-
level BEHAVIOR object has NULL for its boss thereby indicating that it is the “controlling”
material piece. Note that a behavior object may be created within a behavior class, passing
the top-level behavior pointer in creation (see Update.[h,c]).

Z-set 7.4

MATERIAL PIECE
Material piece.h

curr ext param is an EXTERNAL PARAMETER VECTOR used in the calculation of coefficients.
This vector must be updated by the class user. The vector will however be appropriatly
sized, so one could have:

if (!curr_ext_param) curr_ext_param = *mdat.param_set();
in a material which is integrated exactly (no intermediate points during integration).

curr mat data is a pointer on the current MAT DATA object as passed to the BEHAV-
IOR::integration method. Access of material variables will generally be given through
the STORED VARIABLE SPEC objects. Sometimes, however, it is necessary to use the
MAT DATA directly to obtain initial values, or other unmaintained information.

Creators and initialization:

The creators for this class generally pass a super class of type MATERIAL PIECE which is used
to establish the connectivity beteen the different objects. The sucess of automated opterations
depends on the integrity of this interconnectivity. Generally, a sub-class object will be passed a
pointer of the current object when it is created.

setup This method is called recursively through all the MATERIAL PIECE objects by the be-
havior in initialization. During this chain of calls the problem variables are assigned their
relative positions in the MAT DATA vectors. The MATERIAL PIECE’s sizing variables are also
assigned during this sequence. Overloading this method therefore gives a good oportunity
to initialize local optimization variables, etc. It is however essential that the default
method be called. For example, suppose a class B is to be added, deriving from a user
class A which in turn is a MATERIAL PIECE. An overloaded method would be:

void B::setup(int& flux_pos, int& grad_pos, int& vi_pos, int& va_pos)
{ A::setup(flux_pos,grad_pos,vi_pos,va_pos);

local_tensor.resize(tsz);
total_vector.resize(int_sz());

}
The default is called through the class A in case there was additional setup in that class.

Inquiries:

set name, name() These two methods are to be used for assigning the material-piece’s name
identifier. The use of this name is entirely user-defined, but nevertheless maintained as an
encapsulated MATERIAL PIECE member.

int pos(), aux pos() The start-positions in the MAT DATA internal and auxialiary variable
vectors for this object’s local variables. It is generally better to make inquiries to each of the
STORED VARIABLE SPEC objects however.

int sz(), aux sz() give the sizes of the local internal and auxiliary variables which are managed
by the current object. The actual sizes cannot be changed by the user, so that use of
STORED VARIABLE SPEC is required.

if constant coefs returns TRUE if all the coefficients in the object, and also in all this class’s
MATERIAL PIECE objects do not depend on any external parameters, auxiliary variables, or
internal variables.

depends on Returns TRUE if the current object has coefficients which depend on the given
named variable (ext. param, int var, aux var). This method recursivly calls the class’s
MATERIAL PIECE objects as well.

find behavior This method will search the chain of bosses until the hishest level is found (having
a NULL boss. If the behavior is used frequently in a MATERIAL PIECE implementation, it is
best to make a local pointer on the behavior initialized in the creator or setup method.

Z-set 7.5

MATERIAL PIECE
Material piece.h

give boss public method which returns the current object’s boss pointer. Returns NULL for the
top-level behavior.

get var This method returns a pointer on the appropriate named stored variable. A NULL
pointer is returned in the event that no such variable exists in the MATERIAL PIECE.

get param used to get the value for a named external parmater at a given time in the problem.

default output variables Assigns STRINGs for the output variable names to the first passed
parameter. The second parameter is a list of strings used to set user output, or specify the
default (rf:not sure anymore... take a look at it + comment!!).

Z-set 7.6

MATERIAL PIECE
Material piece.h

User Methods:

attach all(MAT DATA& mdat) Used to assign all the object’s STORED VARIABLE SPEC ob-
jects onto the current integration point data. This method is usually called in the behavior
integrate method as:

INTEGRATION_RESULT* USER::integrate(MAT_DATA& mdat,
const VECTOR& dg, MATRIX*& tg_matrix,
int flags)

{ attach_all(mdat);
...

}
The method is virtual so a derived class may use the opportunity to do initialization only
required once for every integrate call (rare).

attach(VECTOR& chi) This version of attach is used to reassign the local variables to the
current integration variables. Only variables attached to the MAT DATA var int vector are
affected. This method will be called by a behavior in the integration method’s functions
(derivative or calc grad f for example). Overloading this method may be a nice way to
perform some local calculations required in each step or iteration of the integration.

attach(VECTOR& chi, VECTOR& d chi) This alternate of the preceeding method may be
used for cases where the trial increment of the integrated variables is interesting. The default
method merely calls the above single parameter method.

calc coef This method is used to calculate an object’s coefficients, and dispatches calc coef
calls to all the MATERIAL PIECE data objects. This method should only be overloaded in
the event that intermediate values are desirable (i.e. to calculate the ratio of two coefficients
which will be used freqeuently). A bool must be returned indicating that something was
calculated.

Hacker Notes:

This class keeps lists of pointers on the objects which compose the material piece analogy. These
include COEFF, STORED VARIABLE SPEC, MATERIAL PIECE, and STORED VINT. Additions are
made to these lists in the constructors which take a MATERIAL PIECE*. The passed object will be
assigned to its boss, and the new obejct added to this boss’s list data.

The class does not destroy the pointers in these lists because the real objects are usually stored
as real data members, and not with dynamically created objects.

Z-set 7.7

STORED VARIABLE SPEC
Int variable holder.h

STORED VARIABLE SPEC

This class is used to handle the cutting up of the behavior variables into usable matematical
entities. The class provides the following hierarchy:

STORED VARIABLE SPEC

STORED VINT

SCALAR VINT

TENSOR2 VINT

VECTOR VINT

MATRIX VINT

STORED VAUX

STORED VAR

STORED FLUX

STORED GRAD

class listing

class STORED_VARIABLE_SPEC : public ERROR_MESSAGER {
friend class MATERIAL_PIECE;

public :
visible_protect(int, start_pos);
visible_protect(int, var_size);

STORED_VARIABLE_SPEC();
STORED_VARIABLE_SPEC(MATERIAL_PIECE* mp);
STORED_VARIABLE_SPEC(MATERIAL_PIECE* mp, int size);
STORED_VARIABLE_SPEC(const STORED_VARIABLE_SPEC& svs_in);
virtual ~STORED_VARIABLE_SPEC();

STORED_VARIABLE_SPEC& operator=(const STORED_VARIABLE_SPEC& svs_in);
bool operator==(const STORED_VARIABLE_SPEC& svs_in);
int operator==(const STRING& str_in)const ;

void initialize(STRING name, int ten_sz, int def_output=1);
virtual void resize(int sz);
virtual void setup(STRING name, int def_output=1);

void set_output() { output_var=1; }
void set_no_output() { output_var=0; }
int operator!()const { return var_size; }

virtual void attach(MAT_DATA& mdat)=0;
void place_var(SCALAR& wht, VECTOR& the_vec);
void place_var(TENSOR2& wht, VECTOR& the_vec);
void place_var(VECTOR& wht, VECTOR& the_vec);

virtual bool is_in(STRING what)const=0;
virtual const double& value(const MAT_DATA& mdat)const=0;

const double& value(const STRING& what, const MAT_DATA& mdat)const;

Z-set 7.8

STORED VARIABLE SPEC
Int variable holder.h

virtual const double& d_value(const MAT_DATA& mdat)const;
const double& d_value(const STRING& what, const MAT_DATA& mdat)const;

void set_value(const STRING& what, MAT_DATA& mdat, double val)const;

virtual void set_value(MAT_DATA& mdat, double val)const;

const double& filter(const double& d)const;
};

Class Use:

All the end types are seen to have a certain attachment, and also a mathematical type. The
later is established using a multiple inheritence relationship (not shown) with the corresponding
math library class. Note also the use of SCALAR for scalar variables. Because the built-in double
type cannot have an equivilence operator defined for the SCALAR type, the operator () is available:

double tempo = user_var();
Normally these variables should be specified in a MATERIAL PIECE class definition. The struc-

ture of these variables is suitable for concrete declaration which would be preferable to using pointers
on dynamically created objects.

Note that the variables have assignment operators, and equivilence ==. The later may be used
to compare a variable with another, or with a string. The string comparison uses the name given
in setup or initialize.

When using these variables, it may arrise that a single material law will prefer to place the
same variable in different locations (e.g. in var int or var aux), or that a given variable is only
needed sometimes. Instead of requiring that different implementations be given for each case, the
variables have some methods to control their behavior. A variable will not be considered an active
part of the problem (taking up space in the MAT DATA structure or being output if any of the the
following are true (even if they are added to the MATERIAL PIECE’s list of local variables):

• The variable has not been sized greater than zero.

• The variable has been re-sized to zero.

• The variable has been reassigned to a local utility storage. This is used in Update.c to allow
the change of gradient variables for finite strain.

Data members:

start pos, var size These two variables give the variable position and length in the assiciated
MAT DATA vector (be it flux, grad, var int, or var aux). Their access may be useful if another
variable must be assigned to the trial increment or initial value vectors during integration.
Note that one may use the place var method instead.

Creators and initialization:

The creators require a MATERIAL PIECE object to be given for each declared variable. The
default creator is given to avoid compiler errors which arise when expanding ARRAY¡¿ or LIST¡¿
templates of the stored variables, and gives a default error message at run time. These variables
must therefore be initialized in for each class which holds them. An example is the following:

class USER : public MATERIAL_PIECE {
TENSOR2_VINT alpha;
SCALAR_VINT beta;

public:

Z-set 7.9

STORED VARIABLE SPEC
Int variable holder.h

USER(MATERIAL_PIECE* mp) : MATERIAL_PIECE(mp), alpha(this), beta(this) {
alpha.initialize("alpha",tsz,0);
beta.setup("alpha");

}
double dbeta() { return beta*(alpha|alpha); }
...

};

After creation, all active variables must be initialized. The following methods are thus
provided to assign a name, allocate storage, and specify that the variable sould be output by default
or not:

initialize sets simultaniously the variable size, the variable name and if it is default output
(default parameter = 1 = yes).

resize sizes the variable approporately. The method is overloaded for the differernt types of
stored variable in order that the correct math class resize member will be called.

setup sets the variable name. This is called from the initialize method.

set output, set no output These methods are used to set the internal flagging for default
output variables.

User Methods:

attach This method is called from within the MATERIAL PIECE attach methods. Each different
type of variable re-defines this method to attach the proper data type to the proper variable
vector.

place var These methods are provide a shorthand way to assign other variables to a vector as
if it were the variable itself (??). For example if the trial vector of integrated variables is
d_chi, one can attach a utility variable for the delta value using one of the STORED VINT
variables. TENSOR2 deel; eel.place_var(deel,d_chi);

is in returns true if the given variable name is valid for the stored variable object. This marks
internally the position so the next call to value etc will return the last searched variable value.
This method responds to sig22 in a tensorial stored variable named sig. Other responses
may be possible such as sig::mises could return the equivilent of a tensor variable.

value, d value, set value These three methods are used in the output and spatial inte-
gration routines. What happens is a function will ask the behavior for a certain vari-
able. This is actually calling the MATERIAL PIECE::get var method which returns a
STORED VARIABLE SPEC object. In searching for the variable (e.g. sig22), the the is in
methods will called for all the problem variables until a yes response is found. The sucessful
is in method will mark the position of the requested value in the variable. Thus the value
or delta value may be had in calling value or d value with the MAT DATA as the only
parameter. The method set value is used to initilize the internal variables.

filter method to be used for filtering noise in variables (not yet implemented). The idea is to
have internal flags for different filters... or maybe a filter object which will elminate noise on
the variables. This could be positive only variables, variables of a certain magnitude or over,
etc.

Hacker Notes:

The class is managed with the following protected data:

Z-set 7.10

STORED VARIABLE SPEC
Int variable holder.h

protected :
STRING stub;
int output_var;
MATERIAL_PIECE* its_mp;

enum { NOWHERE_VAR=0,
VINT_VAR=1,
VAUX_VAR=2,
FLUX_VAR=4,
GRAD_VAR=8 } location;

CARRAY<STRING> local_names;
int last_var_index;
double factor;
static double zero;

void output_var_names()const; // MUST BE CALLED AFTER init !!!
virtual void init(int& flux_pos, int& grad_pos, int& vi_pos, int& va_pos)=0;

Z-set 7.11

BEHAVIOR
Behavior.h

BEHAVIOR

The basic class structure based on BEHAVIOR is at present the folowing:

MATERIAL PIECE BEHAVIOR

M B
M B SD M TLE B SD

LAGRANGE

NL M TLE B SD

BASIC NL BEHAVIOR

THERMAL BEHAVIOR

These are the base classes from which we derive actual behavior implementations. These final
behaviors are discussed within the context of their particular model and coding. The intermediate
classes desribed here rather provide some standard services in order to facilitate repeditive tasks
within a particular domain of problem.

The base class BEHAVIOR provides the mechanism for gauss point data storage and user access,
defines the interface for material law integration functions, and initiates the reading of the material
file. Global material coefficients are read and stored in the base class. Each BEHAVIOR class is
identified by a STRING name.

class listing

class BEHAVIOR : public MATERIAL_PIECE {
protected :

PTR<ROTATION> its_rotation;
int flux_sz, grad_sz;

public :
enum FLAG_TYPE { CALC_TG_MATRIX=1,

GIVE_INCREMENTAL_FLUX=2,
};
PLIST<BEHAVIOR> sub_behaviors;
const int space_dimension;
STRING zone_name;
int integration;

ARRAY<STRING> name_initialized_var_int;
ARRAY<double> value_initialized_var_int;
ARRAY<STRING> file_name_initialized_var_int;
PARRAY<fstream> file_initialized_var_int;

enum {MASVOL, CAPACITY,L_COEF,_NB_COEF_};
PARRAY<COEFFICIENT> coef;

static BEHAVIOR* read(int dim,
const STRING& zone_name,
const STRING& mat_file,
LOCAL_INTEGRATION* integr);

BEHAVIOR(int);

Z-set 7.12

BEHAVIOR
Behavior.h

virtual ~BEHAVIOR();

virtual int base_read(const STRING& tok, ASCII_FILE& file);
void read_base_info(ASCII_FILE& file);
virtual bool if_broken(const MAT_DATA& mdat)const;

void set_rotation(ROTATION* rot);
const ROTATION* rotation()const;

static BEHAVIOR* make_modifier(const STRING&,BEHAVIOR*,ASCII_FILE&,int);

int flux_size()const;
int grad_size()const;

COEFFICIENT* get_coef_named(const STRING&);

virtual void init();
virtual void init_material_data(MAT_DATA&);

// --
// Mechanical behavior methods... default error
// --
virtual SMATRIX get_elasticity_matrix(MAT_DATA& mdat,double theta);
virtual TENSOR2 get_non_mechanical_strain(MAT_DATA& mdat,double theta);

virtual INTEGRATION_RESULT* integrate(MAT_DATA& mdat,
const VECTOR& delta_grad,
MATRIX*& tg_matrix,
int flags);

// --
// Thermal behavior methods... default error
// --
virtual INTEGRATION_RESULT* integrate(MAT_DATA& mdat,

const VECTOR& grad,
double T, double T0,
bool ifCS,
DMATRIX& k, DMATRIX& dk_dT,
double& dH, double& dH_dT);

LIST<COEFF*> Local_coefs;
void calc_local_coefs();

};

Class Use:

The use of the behavior class is better seen through the derived class implementations. Typically
one would find a behavior “close” to the desired type, and follows the previous implementation to
start. External use (in the FEM classes) is largely established, and should not require much
modification. In reality, the behavior class serves a minimal functionality in terms of the FEM
program. The basic points may be summarized as follows:

• Used to update the internal variables, auxiliary variables, and flux vector using the integrate
method. Different syntaxes are available for this method according to the type of problem

Z-set 7.13

BEHAVIOR
Behavior.h

at hand. Default methods give a default “not-implemented” error. The behavior interface is
thus exensible without requiring modification of the existing classes.

• access global coefficients which are required for things such as garvitational force, etc.

• to decipher the material variable storage, and give appropriate values given a named request.
This functionality is now handled in the MATERIAL PIECE class.

• Some special methods are given for specialized problems. Examples are the if_broken
method or the get_elasticity_matrix. Default error messages or empty default imple-
mentations are given depending on the generality of the method. If doing nothing is not
harmfull to a particular application, this will be the default; otherwise a “not-implemented”
error message is issued.

Basic implementations have a normal calling sequence which may be exploited to gain an ef-
ficient imlementation for the material behaviors. One principle rule may be derived from the fact
that normal use creates a small number of behavior objects in the life of a calculation. These objects
are also created in the problem startup and kept until the calculation is complete. Great gains in
performence can thus be obtained by setting up all the required data structures only during the
initialization of the behavior. There are two opportunities for this setup. The first is in the class
constructor. The behavior now has knowlege of the integration method to be used in the construc-
tor, and can thus plan accordingly for the type of data required. The variable sizes and positions are
however not yet initialized (see discussions in MATERIAL PIECE and STORED VARIABLE SPEC).
The second opportunity to perform setup is thus by overloading the MATERIAL_PIECE::setup
method (remember to call the default!).

During execution of the problem, the integrate method will be called repeatidly, passing
the current MAT DATA object and the imposed gradient. Behaviors which integrate directly will
want to call attach_all(mdat); followed by calc_local_coefs(). After this point the program-
ming of the integration should be straightforward. Behaviors with a numerical integration should
call attach_all(mdat); first, determine what integration is active if there are multiple choices,
and dispatch approporately to the integration method. In the integration function (derivative
or calc_grad_f), the MATERIAL PIECE method attach should be called with the current trial
vector of integrated varaibles, and calc_local_coefs() re-called to update possible coefficient
dependencies. External parameters must also be updated for the intermediate point before the
coefs are calculated, so it is often a good idea to make a sub-proceedure to perform the coefficient
calculation:

void USER::calc_material(double fract)
{ if (Variable_coefs==0 && Coef_evaluated) return;

Coef_evaluated=TRUE;
assert(fract>=0. && fract<=1.);
if (!curr_ext_param) {

curr_ext_param = (*curr_mat_data->param_set_ini())*(1.0-fract);
curr_ext_param += (*curr_mat_data->param_set())*(fract);

} calc_local_coefs();
}

Data members:

its rotation is a pointer on the active material coordinate / global coordinate frame rotation.
To go from global to material one apply’s the rotation, and conversly to go back to global
the rotation object remove’s the rotation. Remeber to document in which referencial the
internal variables are stored when there is a rotation1.

1we could attach the behavior’s rotation to the TENSOR2 VINT objects etc, and have them remove
the rotaion during output...

Z-set 7.14

BEHAVIOR
Behavior.h

flux sz, grad sz keep track of the total flux and grad size as composed by all active
STORED FLUX and STORED GRAD objects.

space dimension The spatial dimension. I would prefer if this were an enum of
SPACE DIMENSION which could take on more info describing the dimension. A more precise
method would have to be given to translate the space dimension to a tensor size...

sub behaviors Should be changed to use the MATERIAL PIECE methods.

integration an enum value used to desribe the type of integration method. This must now be
set by the user in the BEHAVIOR creator. In the event that NULL is passed to the creator,
the object will be responsible for creating a default integration method if necessary.

zone name name of the element set in which the current behavior applies.

FLAG TYPE this enum is used to set and verify bits in the integrate method’s flag parameter.

coef this array of COEFFICIENT should be changed. Currently they are accessed using the
preceeding enumerations. We should rather have individual COEFF objects introduced at
the point within the class hierarchy where they become physically valid.

local coefs list of COEFF* pointers for all the COEFF objects which exist in the current
behavior. These pointers are maintained by the COEFF class during creation and destruction.
The user has no reason to manipulate or acess this list. Calling the calc_local_coefs()
method will update the coefficients with the data used in the last attach all or attach call
(defined in MATERIAL PIECE/).

There are some data memebers which still need documentation:

name initialized var int

value initialized var int

file name initialized var int

file initialized var int

Creators and initialization:

The base behavior class only includes the contructor taking an integer for the space dimension
(should be changed to space dim. enum). The different behaviors may be created by using the
read method which calls an “auto-read” object installation. The constructor for derived behaviors
must thus be consistent with the prototype given for the auto-read functions. This prototype is
the following:

NEW_CLASS::NEW_CLASS(ASCII_FILE& file,
int dim,
LOCAL_INTEGRATION* integ);

The auto-read declaration is simplified for the behavior class using another define:
BEHAVIOR_READER(NEW_CLASS, behavior-string-name);

read base info Performs a ASCII_FILE::locate call to search for ***coefficient in the
material file. Global coefficients are then read and the file re-wound to its original position.
The reqinding is considered to be a *bad* thing.

base read This is another option for loading the coefficients, or other stuff which exists in a
base class. A sample material file read function could be:

Z-set 7.15

BEHAVIOR
Behavior.h

for (;;) {
STRING str = file.getSTRING();
if (str.start_with("***") { file.back(); break; }
else if (BASE::base_read(str,file)) { }
else if (str == "**user_tok) {

/* user input code */
}
else INPUT_ERROR("Unkown command: "+str);

}

The method is overrided for the different base classes given above (M B, etc), to give a default
reading for the basic data contained in these classes, and re-used for all derived classes. The
call of base_read should always be to the immediate super-class of the current, even if there
is no overrided base_read method. This allows one to be added at a later date without
updating of the derived classes.

init Used to request that the behavior initialize itself after the problem is loaded. The exter-
nal parameters may now be observed, and the MATERIAL_PIECE::setup recursive calling is
initiated. Method is called only from the BEHAVIOR::read method.

init material data called in P_element.c to initialize the MAT DATA structures for the prob-
lem.

make modifier is used to manage the behavior modifiers.

Inquiries and flags:

if broken used for breakable elements or interfaces so the particular element may be removed
from the problem. The dafault implementation never breaks.

set rotation, rotation used to set and access the behavior’s rotation structure.

get coef named method used in the global code to get access to the different global coefficients.
This method should be changed.

get elasticity matrix Used for the MMC model.

get non mechanical strain Used for the MMC model.

User Methods:

integrate This method is where the material must be updated over a loading increment.

calc local coefs This method is used to loop through the list of COEFF object to update
their values. The call uses the most current MAT DATA structure. Coefficients will call their
MATERIAL PIECE object in asking for a certain variable if there are variable dependencies.
Thus a coefficient may have limited access to the variable set if its boss is a material piece
other than the behavior itself. For example, suppose there is a material piece HARDENING
which has some coefficients. Initializing the coefficients in HARDENING with this would
limit the possible dependencies ofr that coefficient to the variable set in the HARDENING
class only. Using instead find_behavior() would give access to the entire problem’s variable
set.

Z-set 7.16

COEFFICIENT
Coefficient.h

COEFFICIENT

COEFFICIENT are used be BEHAVIOR. There are three different types derived from the base class.

COEFFICIENT

TCOEFFICIENT

CCOEFFICIENT RCOEFFICIENT

FCOEFFICIENT

TCOEFFICIENT are coefficients defined by a TABLE, CCOEFFICIENT coefficients that are constant
and FCOEFFICIENT coefficients that are defined by a FUNCTION, RCOEFFICIENT} coefficients that
are constant but vary in the structure.

See Also : COEFF, MATERIAL PIECE

class listing

class COEFFICIENT : public ERROR_MESSAGER {
protected :

const STRING name;
ARRAY<STRING> param_name;
const MATERIAL_PIECE* const its_boss;

VECTOR param_value;
void set_param_value();

public :
COEFFICIENT(const STRING& name, const MATERIAL_PIECE* const boss);
COEFFICIENT(const COEFFICIENT& cin);
virtual ~COEFFICIENT();
virtual COEFFICIENT* copy_self()const;

static COEFFICIENT* read(ASCII_FILE&,
const STRING& name,
MATERIAL_PIECE* boss=NULL);

static void read_coefficient(PARRAY<COEFFICIENT>& coefs,
const CARRAY<STRING>& coef_names,
const ARRAY<bool>& enforce,
const STRING& err_msg,
ASCII_FILE&,
MATERIAL_PIECE* boss=NULL);

const ARRAY<STRING>& parameters()const { return param_name; }

const STRING get_name()const {return name;};

void set_parameters();
void set_parameters(double x);

bool depends_on(const char* const)const;
virtual double compute_value()const=0;
virtual double initial_value();

Z-set 7.17

COEFFICIENT
Coefficient.h

virtual double delta_value();
double compute_value(double x);
virtual double d_param(const char* const param_name)const=0;
virtual double d_param(double x)const;
virtual double d_param()const;
virtual void init();
static LIST<COEFFICIENT*>* List_of_coefficient;
static void Init_all_coefficient();
HIERARCHY_BASE;

};

Class Use:

The COEFFICIENT classes should never be used directly in a material behavior, or in a part of
a material behavior. Instead, the COEFF envelope class should be used to maintain the coefficients.
This file is given for those wishing to add new types of coefficients only.

Data members:

name The coefficient name. This is used for error messages, etc.

param name vector of the STRING names of all dependency varaibles2.

its boss the MATERIAL PIECE which is managing the current coefficient. The coefficient may
depend on any variable at or below its_boss if that class allows3.

param value vector of the current parameter values. These are arranged in the same order as
the param_name.

List of coefficient List of all the problem’s coefficients which is required for some reason.
Maybe for spatially varying coefficients?

Hacker Notes:

The current version of COEFFICIENT has been
modified to use the MATERIAL PIECE methodology for material components. Basically now it
all happens in the COEFFICIENT::set_param_value() method. The coefficient keeps the current
values of params in a vector param_value which must be updated at each set_param_value()
call. Updateing will call the coefficient’s MATERIAL PIECE boss with a named request for a value.
This is in fact a two part process. Thr first part calls for an external parameter value, and if not
found the second part is a search for an internal or auxiliary variable with the appropriate name.
This process is still under developpment. Modifications should concentrate on elegence and not
efficiency. Optimization will be added later to the MATERIAL PIECE search process.

2we should have a utility class such as PARAMETER SPEC which contains the name, pointer on the
variable class, current value, etc... lump it all together

3the mechanism to limit variable access to the coefficients is cureently missing. There should be some
type of “publish” methods in the stored variable classes.

Z-set 7.18

COEFF
Coefficient.h

COEFF

This class serves much the same function for coefficients as the STORED VARIABLE SPEC class
does for stored material variables. The point here is to hide the different types of COEFFICIENT
inside an envelope class which can be used as a concrete data type (no pointers).

class listing

class COEFF : public SCALAR {
public :

COEFF();
void read(const STRING& name, ASCII_FILE&, MATERIAL_PIECE*);
void set_coefficient(COEFFICIENT* cin, MATERIAL_PIECE* mp);

COEFF(const COEFF& cin);
COEFF& operator=(const COEFF& c);
COEFF& operator=(const double& d);
COEFF& operator*=(const double& d);
COEFF& operator/=(const double& d);

bool ok()const;
double& operator()();
const double& operator()()const;

void set_factor(double d);

virtual ~COEFF();

const ARRAY<STRING>& parameters()const;
const STRING get_name()const;

void set_parameters();
void set_parameters(double x);

bool depends_on(STRING wht)const;
virtual void init();

double initial_value();
double delta_value();
double compute_value();
double compute_value(double x);

virtual double d_param(const char* const param_name)const;
double d_param(double x)const;
double d_param()const;

bool areYouA(const char* wht) const;
const char* isA()const;
bool verification();

Class Use:

This class intends that the material coefficients be as easy to use as a double value in the models.

Z-set 7.19

COEFF
Coefficient.h

The class thus derives from a base class SCALAR having a multitude of operators pre-defined. Alas,
the one thing which cannot be done is re-define an equivilence operator for the double class itself,
so to do assignment to a double one must use the () operator: double tmp = user_coef();

This class hids the fact that coefficients may be any of the coefficient class’s derived types. The
use of pointers is thus hidden to the user while still supporing the polymorphic constructions. The
class also permits the use of a scaling factor to be added to the coefficient in order to elminate
almost totally the need for user calc_coef methods. User classes should normally include the
COEFF objects as concrete data in their declarations:

class MODEL : public MATERIAL_PIECE {
protected :

COEFF A, B;
public :

MODEL(ASCII_FILE& file, MATERIAL_PIECE* mp);
};

The coefficients are usually read in the creator, which could be for example:

MODEL::MODEL(ASCII_FILE& file, MATERIAL_PIECE* mp) :
MATERIAL_PIECE(mp)

{ err_name = "MODEL";
for (;;) {

STRING str = file.getSTRING();
if (str[0]==’*’) { file.back(); break; }
else if (str=="A") A.read(str,file,this);
else if (str=="B") B.read(str,file,mp);
else INPUT_ERROR("Unknown coefficient: "+str);

}
if (!B.ok()) INPUT_ERROR("Coefficient B required");
B *= 1.5;

}

Note that the coefficient B may depend on the variables maintained by the boss material piece mp,
while the coefficient A may only depend on the variables in the MODEL class.

Data members:

Creators and initialization:

Inquiries:

User Methods:

Hacker Notes:

protected :
COEFFICIENT* coef;
double factor;

Z-set 7.20

COEFFICIENT MATRIX
Coefficient matrix.h

COEFFICIENT MATRIX

This class is used for matricies which are composed of coeffient values (e.g. elasticity matrix,
etc). The class supports many different forms of matrix, and may be used as a SMATRIX object
(it is one).

class listing

class COEFFICIENT_MATRIX : public SMATRIX,
public MATERIAL_PIECE {

protected :
virtual void compute_matrix()=0;

public :

COEFFICIENT_MATRIX(MATERIAL_PIECE* boss ,
MATRIX_TYPE a_type);

COEFFICIENT_MATRIX(const COEFFICIENT_MATRIX& cin);

virtual ~COEFFICIENT_MATRIX();

static COEFFICIENT_MATRIX* read(ASCII_FILE& file,
MATERIAL_PIECE* boss,
const char* nm="y",
const char* def="default");

virtual bool calc_coef();

bool if_constant()const;
virtual SMATRIX d_param(const STRING& p_name);

};

Class Use:

The coefficient matrix provides a flexible interface for reading the material input file,
which is necessitated by the different applications it can be used for. Prinipally, the user
may select what matrix type will be the default (in the absence of a specific declaration),
and also what will be the naming scheme for the individual elements of the matrix. The
most basic application of this class is to load an elasticity object in a material behavior:

E = COEFFICIENT_MATRIX::read(file,this); which allows the following syntax to be read:
*elasticity young 200000.0 poisson 0.3 slap
Other applications may

be to use the matrix as an optional anisotropic coefficient M . Here one would read the matrix
using the command: M = COEFFICIENT_MATRIX::read(file,this,"M","diagonal"); which
will be able to read the following material file excerpt: *interaction M 2000.0

Z-set 7.21

CRITERION
Criterion.h

CRITERION

class listing

class CRITERION : public MATERIAL_PIECE {
protected:

SMATRIX _unit;
TENSOR2 norm;

public:
CRITERION(MATERIAL_PIECE* boss);
CRITERION(const CRITERION& cin);

virtual CRITERION* copy_self();

virtual ~CRITERION();

static CRITERION* read(ASCII_FILE&, MATERIAL_PIECE*);

virtual double yield(const TENSOR2& sig_eff, double radius);

virtual double eq_stress(const TENSOR2& sig_eff);

virtual const TENSOR2& dcrit_dsig();
virtual const TENSOR2& normal();
virtual MATRIX dnorm_dsig();
virtual TENSOR2 dcrit_dbs();
virtual double dcrit_dradius();
virtual MATRIX dnorm_dbs();

const TENSOR2& last_normal() { return norm; }

const SMATRIX& M_matrix() { return _unit; }

virtual double yield(const TENSOR2& sig, const TENSOR2& x1,
const TENSOR2& x2, double radius);

virtual const TENSOR2& dcrit_dsig(int num);
virtual MATRIX dnorm_dsig(int num);
virtual TENSOR2 dcrit_dbs(int num);
virtual MATRIX dnorm_dbs(int num);
virtual const TENSOR2& normal(int num);

HIERARCHY_BASE;
};

Class Use:

Data members:

Z-set 7.22

CRITERION
Criterion.h

Creators and initialization:

Inquiries:

User Methods:

Hacker Notes:

Z-set 7.23

FLOW
Flow.h

FLOW

class listing

class FLOW : public MATERIAL_PIECE {
protected:

double _k_coef;
public:

FLOW(MATERIAL_PIECE* boss);
FLOW(const FLOW& in);

static FLOW* read(ASCII_FILE& file, MATERIAL_PIECE* b);
MATERIAL_PIECE* copy_self()const;

const double& k_coef() { return _k_coef; }
virtual int plasticity() { return 0; }
void set_variables(double v, double stress);

virtual double flow_rate(double v, double stress);
virtual double dflow_dv();
virtual double dflow_dcrit();

virtual double kappa(double dp, double dt);
virtual double dkappa_dv();
virtual double dkappa_dcrit();

virtual bool deriv_wrt(double& ret, const char* const wht);

DERIVED;
};

Class Use:

Data members:

Creators and initialization:

Inquiries:

User Methods:

Hacker Notes:

Z-set 7.24

Chapter 8

Specific behaviors

Z-set 8.1

THERMO LINEAR ELASTIC SD
Linear elastic.c

THERMO LINEAR ELASTIC SD

This class is the basic implemntation of elastic behavior with a possible thermal strain compo-
nent. The implementation is very short and therefore a good example to start with. The whole
model is contained in a single source file (.c), and because of the auto-read connectivity the no
other file has dependency on this model.

class listing

class THERMO_LINEAR_ELASTIC_SD : public M_TLE_B_SD {
public :

THERMO_LINEAR_ELASTIC_SD(ASCII_FILE& file, int dim, LOCAL_INTEGRATION*);
INTEGRATION_RESULT* integrate(MAT_DATA& mdat,const VECTOR& delta_grad,

MATRIX*& tg_matrix, int flags);
};

Creaton and setup:

BEHAVIOR_READER(THERMO_LINEAR_ELASTIC_SD,linear_elastic);

THERMO_LINEAR_ELASTIC_SD::THERMO_LINEAR_ELASTIC_SD(
ASCII_FILE& file,
int dim,
LOCAL_INTEGRATION* /* integ */) :

M_TLE_B_SD(file, dim)
{

for (;;) {
STRING str=file.getSTRING();
if (str.start_with("***")) break;
else if (!base_read(str,file)) INPUT_ERROR(str());

} file.back();
}

Implementation:

INTEGRATION_RESULT* THERMO_LINEAR_ELASTIC_SD::integrate(MAT_DATA& mdat,
const VECTOR& delta_grad,
MATRIX*& tg_matrix,
int flags)

{ attach_all(mdat);
if (!curr_ext_param) curr_ext_param = *mdat.param_set();
calc_local_coefs();

if (thermal_strain.if_not_null() && mdat.param_set())
sig = *elasticity*(eto - thermal_strain->compute_strain());

else sig = *elasticity*eto;

if (flags&CALC_TG_MATRIX) tg_matrix = elasticity();

return NULL;
}

Z-set 8.2

THERMO LINEAR ELASTIC SD
Linear elastic.c

The attach_all call will setup the flux tensor sig and the grad tensor eto. The data
curr_ext_param defined in MATERIAL PIECE must be assigned to the current value, after which
all the coefficients may be calculated in calc_local_coefs. This later will calculate the /COEF-
FICIENT MATRIX/ COEFF objects because /COEFFICIENT MATRIX/ is a MATERIAL PIECE.

Z-set 8.3

NL M TLE B SD
Gen visco.h

NL M TLE B SD
NonLinear Mechanical Thermal Linear Elastic Behavior Small Displacement.

— Class is derived from : M B SD, RUNGE INTEGRATOR,
THETA INTEGRATOR 1

The basic class structure based on NL M TLE B SD is at present the folowing:

NL M TLE B SD

VISCO

GEN NL M B SD
GEN NPOT M B SD

GEN NPOT M B SD2

GROUP NL M B SD
GROUP NPOT

GROUP CRYSTAL

This class and its derivatives are intended to be used for generalized non-linear mechanical
behavior taking into account for thermal strains. The derivation from both RUNGE INTEGRATOR and
THETA INTEGRATOR allows us to write the general functions for initial treatment in integrate
while the actual material law is computed in derivative and calc grad f. We are of course free
to override these functions. Virtual functions are usually designed to be called at the head of the
redefined function such as in calc material. This allows the part which is always required to be
done n the base class, while at the same time we are adding on to it.

The derived classes implement specific models of plastic / viscoplastic behavior either explic-
itly as in the case of VISCO or generally for multi-potential systems in the GEN NL M B SD and
GROUP NL M B SD classes.

class listing

class NL_M_TLE_B_SD : public M_B_SD,
public RUNGE_INTEGRATOR,
public THETA_INTEGRATOR {

protected:
int psz;
int tot_sz;
int rank_of_temperature;
double m_last_temp;
EXTERNAL_PARAMETER_VECTOR *m_param_set_int;
RUNGE *m_intrk;
THETA *m_inttn;
GLOBAL_HANDLER *m_glob;

TENSOR2 m_detot;
VECTOR m_f_vec;
VECTOR m_d_chi;
VECTOR m_f_0;
SMATRIX m_f_grad;
virtual void set_up_theta();

virtual void do_strain_part();
virtual bool integrate_theta_a();

1These classes are derived from M B SD because The input for ELASTCITY is redefined.

Z-set 8.4

NL M TLE B SD
Gen visco.h

virtual bool integrate_theta_b();
virtual bool integrate_runge();
virtual int calc_material(double fract);

void error(int id,...)const;
MAT_DATA *m_mdat;

const VECTOR *m_delta_grad;
SMATRIX *m_tg_matrix;

public:
NL_M_TLE_B_SD(ASCII_FILE& file, int prob_size);

FEM_IDENTIFY3(NL_M_TLE_B_SD,M_B_SD,RUNGE_INTEGRATOR,THETA_INTEGRATOR);

virtual ~NL_M_TLE_B_SD();
static NL_M_TLE_B_SD* read(ASCII_FILE& file, STRING& typ, int dim);

void default_integration();
bool allowed_integration(PTR0<LOCAL_INTEGRATION>&);

virtual bool integrate(MAT_DATA& mdat,const VECTOR& delta_grad, SMATRIX& tg_matrix);
};

protected member data

general data
psz problem size (symmetric tensor size)
tot sz total internal variable storage size
rank of temperatureposition of the temperature in the parameter vector. Temperature

variables should not be of use if the base calc material has been
called

m last temp storage used to prevent recalculation of coefficients
m glob class to hadle treatment of the elastic stress-strain relationship.

Possibility of energy-based damage models to be included here.
Replaces elasticity here.

m mdat history data for integration. this pointer is attached to the structure
passed in integrate so that we have access everywhere in the class.

m delta grad similar function for the delta grad vector.
m tg matrix similar function for tg matrix.

integration method related data
m intrk Runge Kutta integration
m inttn Theta Newton integration
m detot tensor used to store the imposed strain increment or rate. acts as an

interface between the strain handling functions of
NL M TLE B SD and the integrating functions in derived classes

m f vec holds the residual for a theta method or the internal variable rates
for runge-kutta. it is handled such that sub elements attached to it
are kept for the duration of the problem.

m d chi internal variable rate increment in theta-method. Same storage as
the var int vector.

m f 0 vector to hold the theta-system result or Runge-Kutta internal
variable rates. For Runge-kutta storage is the same as in var int.

m f grad Jacobian matrix for the theta method.

protected member functions

Z-set 8.5

NL M TLE B SD
Gen visco.h

set up theta function called if a theta method is chosen. Default function gives
an error so the actual implementation of the theta method is not
forced on a model.

XX XX
XX XX
error function used to issue error messages

Model Use:

The derived class VISCO2 presents an implementation of classical viscoplastic behavior based
on the the NL M TLE B SD class. That implementation can be taken as a starting point for rapidly
implementing new non-linear material laws.

The integrate function tags the MAT DATA structure as well as the tangent matrix and imposed
gradient so they can be accessed from other member functions. There should probably not be any
reason to redefine this function for new nonlinear behaviors.

The functions integrate runge, integrate theta a, and integrate theta b provide pre-
treatment for their namesake integration methods. These functions call do strain part in turn
for the calculation of inelastic strain tensors. Provided the elastic strain tensor composes the first
elements in the var int vector, these functions should be valid for derived behaviors.

2not yet implemented

Z-set 8.6

GEN NL M B SD
Gen visco.h

GEN NL M B SD
GENeralized NonLinear Mechanical Behavior for Small Displacement.

— Class is derived from : NL M TLE B SD

This behavior implements classical multi-potential plastic / viscoplastic behavior with arbitrary
potential definitions without limit in number of potentials. The integration is thus carried out first
for the elastic strain evolution, followed by the evolution of internal variables in the dissipation
potentials (see class POTENTIAL definition). The treatment of stress-elastic strain relations are
handled by the classes GLOBAL HANDLER as inclrperated in NL M TLE B SD .

The integration vector is assembled automatically with sub elements defined during the calling
of a setup function such as setup theta. We can expect in the future that conditions may be
set so that during a calculation the internal variable vector can be rearranged in order to add or
subtract newly active and inactive dissipation potentials. The present assembly of the integation
vector follows the form:

[εel . . .][v1 h1][v2 h2] . . . [vn hn] (1)

where the first element contains the elastic strain and any additional “global” variables. Such
global variables are treated by the class HANDLER discussed further on. All the elements defined
in the list of POTENTIALs are stored with their cumulated multiplyer followd by the sub vector of
internal variables. The POTENTIAL classes are unaware of this structure.

The internal; variable vector is complemented by the auxilary variable vector used to store
parameters which can be calculated directly at the end of the time step. This vector is stored in
the following fashon:

[εin][ε1 . . .][ε2 . . .] . . . [εn . . .] (2)

At the time we have only one inelastic potential, the term ε1 is dropped, leaving only those
additional parameters required for that potential.

For an integration by Runge-Kutta, the integrated variables are restricted to the following
model form:

ε̇el + ε̇i = ε̇tot − ε̇th (3)

v̇i = λ̇i(p, f) (4)

ḣi = v̇ mi(pσ, Hi)− ω̇i(Hi) (5)

where the indicies are summed through the list of potentials selected by the user. Time inde-
pendant potentials are placed at the end of the in order to calculate the plastic multiplyer calculated
in function derivative (see the derived classes for the specific implementation).

Hi = Hoi(hi) + Mij(p,hi) · hj (6)

The integration by the theta method is carried out using an incremental version of the rate
equations 3-4. These equations define the residual vector:

∆εel + ∆λini = =el (7)

∆vi −∆t · λ̇i(p, f) = =vi (8)

∆hi −∆vi ·mi(p, σ,H)−∆t · ω̇(H) = =hi (9)

Z-set 8.7

GEN NL M B SD
Gen visco.h

protected member data

xx xx
xx xx
xx xx
xx xx

Z-set 8.8

LINEAR VISCOELASTIC
Viscoelasticity.h

LINEAR VISCOELASTIC

This class derives from M_B_SD.

protected member data

K0 PTR<COEFFICIENT> K0
K0 coefficient

K inf PTR<COEFFICIENT> K inf
K∞ coefficient

G0 PTR<COEFFICIENT> G0
G0 coefficient

G inf PTR<COEFFICIENT> G inf
G∞ coefficient

shear LIST<SHEAR*> shear
list of all shear components

volumic LIST<VOLUMIC*> volumic
list of all volumetric components

protected member class

SHEAR class SHEAR . . .
member class used to define shear components

VOLUMIC class VOLUMIC . . .
member class used to define volumetric components

protected member functions

error void error(int id,...)const
function used to issue error messages

public member functions

LINEAR VISCOELASTIC LINEAR VISCOELASTIC(ASCII FILE& file,int dim)
creator, calls M B SD::M B SD

˜LINEAR VISCOELASTIC ~LINEAR VISCOELASTIC()
destructor

var int size virtual int var int size(int dimen) const
cf. BEHAVIOR, (1+!shear)*TENSOR2::give symmetric size(dimen)
+ !volumic

var aux size virtual int var aux size(int dimen) const
cf. BEHAVIOR, return 1

init var int name virtual void init var int name(int dimen)
cf. BEHAVIOR

init var aux name virtual void init var aux name(int dimen)
cf. BEHAVIOR

nb var in default output virtual int nb var in default output(int
dimen)const
cf. BEHAVIOR,
2*TENSOR2::give symmetric size(dimen)

default output virtual ARRAY<STRING> default output(int dimen) const
cf. BEHAVIOR, sig and eto

integrate virtual bool integrate(MAT DATA&,const VECTOR&, SMATRIX&)
cf. BEHAVIOR

Z-set 8.9

LINEAR VISCOELASTIC::SHEAR
Viscoelasticity.h

LINEAR VISCOELASTIC::SHEAR

LINEAR VISCOELASTIC member class used to store data relative to shear deformation mecha-
nisms.

private member functions

tau PTR<COEFFICIENT> tau
τ coefficient

omega PTR<COEFFICIENT> omega
ω coefficient

private member functions

SHEAR SHEAR(ASCII FILE&,BEHAVIOR*)
constructor, BEHAVIOR* is the pointer to the behavior which used
that SHEAR

error void error(int id,...) const
error function

friend class

LINEAR_VISCOELASTIC

Z-set 8.10

LINEAR VISCOELASTIC::VOLUMIC
Viscoelasticity.h

LINEAR VISCOELASTIC::VOLUMIC

LINEAR_VISCOELASTIC member class used to store data relative to shear deformation mecha-
nisms.

private member functions

tau PTR<COEFFICIENT> tau
τ coefficient

omega PTR<COEFFICIENT> omega
ω coefficient

private member functions

VOLUMIC VOLUMIC(ASCII FILE&,BEHAVIOR*)
constructor, BEHAVIOR* is the pointer to the behavior which used
that VOLUMIC

error void error(int id,...) const
error function

friend class

LINEAR_VISCOELASTIC

Z-set 8.11

POROUS PLASTIC
Porous.h

POROUS PLASTIC

Implementing constitutive equations for porous materials

•Equivalent stress

The equivalent stress σ? is supposed to be explicitly or implicitly defined by the following
equation:

φ(σ∼, f, σ?) = 0

where σ∼ is the stress tensor and f the porosity.

•Internal variables

The internal variables are:
— the elastic deformation tensor ε∼e

— the isotropic hardening variable p
— the porosity f (fn for crack like nucleation)
The internal variables are related to the forces by:

ε∼e = Cσ∼

where σ∼ is the stress tensor.

•External variables

The external variables are:
— the equivalent plastic deformation p? =

∫
λ̇ dt

•Interaction matrix
It is possible to define an interaction matrix I between internal/external variables and forces:

σ∼
p
f

∆λ

 = I

ε∼e

p
f

∆λ

with

I =

C

1
1

1

•θ–method: residuals

The total deformation increment ∆ε∼ is imposed. Strain partitioning gives:

ε̇∼e + ε̇∼p = ε̇∼− ε̇∼th

where ε∼th is the thermal deformation. The normality rule gives:

ε̇∼p = (1− f)λ̇
∂σ?

∂σ∼

Integrating the preceeding equation gives:

Re = ∆ε∼e + ∆λ(1− f)
∂σ?

∂σ∼
= ∆ε∼−∆ε∼th

Z-set 8.12

POROUS PLASTIC
Porous.h

The evolution of the porosity is simply given by mass conversation:

ḟ = (1− f)Trace
(
ε̇∼p

)
or after integration

Rf = ∆f − (1− f)2∆λTrace
(

∂σ?

∂σ∼

)

The evolution of the plastic strain p is given by (no recovery) the condition that the plastic
work of the matrix material is equal to the plastic work of the homogeneous material:

(1− f)σ?ṗ = ε̇∼p : σ∼ = (1− f)λ̇
∂σ?

∂σ∼
: σ∼

The plastic multiplier is therefore given by:

λ̇ =
ṗ

∂σ?

∂σ∼
:

σ∼
σ?

ṗ is given by the flow law of the matrix material:

ṗ = F (σ? −R)

The corresponding residuals are therefore:

∆λ =
∆p

∂σ?

∂σ∼

σ∼
σ?

and
∆p = F (σ? −R)∆t

•θ–method: tangent matrix

In order to use the θ–method it is necessary to have the partial derivatives of the preceeding
residuals (Re, Rf , Rp and Rλ) with respect to the “associated” forces. Following definitions are
used:

τ = Trace
(

∂φ
∂σ∼

)
h =

(
∂φ
∂σ?

)−1

ω = σ? −R (overstress)

Note that
∂h

∂X
= −h2 ∂2φ

∂σ?∂X

∂σ?

∂σ∼
is calculated as follows. For f =constant and φ = 0, one has:

δφ =
∂φ

∂σ∼
δσ∼ +

∂φ

∂σ?
δσ? = 0

or
∂σ?

∂σ∼
|f, φ=0 = −h

∂φ

∂σ∼

Z-set 8.13

POROUS PLASTIC
Porous.h

More generally one has (using the same arguments)

∂σ?

∂x
= −h

∂φ

∂x

Residuals can be rewritten as follows:

R = R1(∆v) + R2(F) = R0

with

R1 =

∆ε∼e

∆p
∆f

K∆λ

 R2 =

−(1− f)∆λh

∂φ

∂σ∼
−F (σ? −R)∆t
∆λh(1− f)2τ
− ∆p

∂σ?
∂σ∼

σ∼
σ?

 R0 =

∆ε∼−∆ε∼th

0
0
0

∂R

∂∆v
is calculated as:

∂R1

∂∆v
=

1

. . .
1

K

and

∂R2

∂∆v
=

∂R2

∂F

∂F

∂v

∂v

∂∆v

on has:

∂F

∂v
= I ∂v

∂∆v
=

θ

. . .
θ

1

∂R2

∂F
has then to be calculated.

∂R2
e

∂σ∼
= (1− f)h∆λ

[
h

∂2φ

∂σ∼∂σ?
⊗ ∂φ

∂σ∼
− ∂2φ

∂σ∼
2

]
∂R2

e

∂f
= ∆λh

[[
1 + (1− f)h

∂2φ

∂σ?∂f

]
∂φ

∂σ∼
− (1− f)

∂2φ

∂σ∼∂f

]
∂R2

e

∂p
= 0

∂R2
e

∂∆λ
= −(1− f)h

∂φ

∂σ∼

∂R2
p

∂σ∼
= F ′(ω)h

∂φ

∂σ∼
∆t

∂R2
p

∂p
= F ′(ω)R′θ∆t− ∂F

∂p
∆t

∂R2
p

∂f
= F ′(ω)h

∂φ

∂f
∆t

Z-set 8.14

POROUS PLASTIC
Porous.h

∂R2
p

∂∆λ
= 0 with F ′(ω) =

∂F

∂ω
.

∂R2
f

∂σ∼
= (1− f)2∆λh

[
1∼

∂2φ

∂σ∼
2
− hτ

∂2φ

∂σ∼∂σ?

]
∂R2

f

∂p
= 0

∂R2
f

∂f
= (1− f)∆λh

[
−2τ − (1− f)τh

∂2φ

∂σ?∂f
+ (1− f)Trace

(
∂2φ

∂σ∼∂f

)]
∂R2

f

∂∆λ
= (1− f)2hτ

One assumes that h ∂φ
∂σ∼

:
σ∼
σ?

varies very slowly compared to other variables. In the case of the
elliptic and Von Mises (i.e. all potentials for f close to 0) potentials this quantity is always equal
to 1.

∂R2
λ

∂σ∼
= 0

∂R2
λ

∂p
= − 1

h ∂φ
∂σ∼

:
σ∼
σ?

∂R2
λ

∂f
= 0

∂R2
λ

∂∆λ
= 0

•Adding strain controlled nucleation
ḟ is now given by:

ḟ = −(1− f)2hλ̇τ + ḟn

ḟn = A(p, . . .)ṗ

the corresponding residual Rf is now:

Rf = ∆f + (1− f)2hτ∆λ−A(p, . . .)∆p

Partial derivatives are modified as follows:
Add to ∂R2

f/∂p

−
[
A +

∂A

∂p
θ∆p

]
(10)

since p at θ is equal to p0 + θ∆λ, where p0 is the value of p at the beginning of the increment.

•Adding stress controlled nucleation
Ask for it and propose tests if you want it!
•Adding sintering strain

The plastic strain rate is modified as follows:

ε̇∼p = λ̇(1− f)
∂σ?

∂σ∼
+ ε̇∼s(f, . . .)

where ε̇∼s represents the sintering strain. Other constitutive equations are not modified.
Re is now expressed as:

Z-set 8.15

POROUS PLASTIC
Porous.h

Re = ∆εe −∆λh(1− f)
∂φ

∂σ∼
+ ε̇∼s∆t

and Rf as

Rf = ∆f + (1− f)2∆λhτ − (1− f)∆tTrace
(
ε̇∼s

)
The following terms are added to the partial derivatives:
to ∂R2

e/∂f

∆t
∂ε̇∼s

∂f

to ∂R2
f/∂f

∆t

[
Trace

(
ε̇∼s

)
− (1− f)Trace

(
∂ε̇∼s

∂f

)]
•Adding sintering stess
Ask for it and propose tests if you want it!
•Adding several nucleation/sintering mechanisms
Several nucleation/sintering mechanisms can be added without any problem since the preceed-

ing equations are linear.

• Crack like nucleation

In some cases nucleation does not result from inclusion/matrix debonding (which results in
the formation of voids so that the volum effectively occupied by the material decreases) but in
cracks which weaken the material without generating actual voids. Indeed these cracks will grow
as deformation increases and finally create voids. In order to represent this phenomenon a new
internal variable fn has to be introduced in the model. It represents the damage due to cracks.
The evolution of fn is depicted by strain/stress nucleation, so that:

∆fn = A(. . .)∆p

The equivalent stress is defined by:
φ(σ∼, f + fn, σ?)

Since of actual fraction of material in a unit volume is still (1− f), the plastic strain rate is still:

ε̇∼p = λ̇(1− f)
∂σ?

∂σ∼

An other residual equation has to be added to the system:

Rfn = ∆fn −∆p
∑

A(. . .)

Partial derivative of R2
fn

are given by eq. [D2fdp]
It is also necessary to calculate the partial derivative of the other residuals with respect to fn.

∂R2
e

∂fn
= ∆λ(1− f)h

[
h

∂2φ

∂σ?∂f
⊗ ∂φ

∂σ∼
− ∂2φ

∂σ∼∂f

]
∂R2

p

∂fn
=

∂R2
p

∂f

∂R2
f

∂fn
= (1− f)2∆λh

[
−τh

∂2φ

∂σ2
?

f + Trace
(

∂2φ

∂σ∼∂f

)]

Z-set 8.16

POROUS PLASTIC
Porous.h

∂R2
λ

∂fn
= 0

Once again several nucleation can be added both depicting decohesion and cracking.

• Kinematic Hardening (Not yet implemented)
Kinematic hardening has been introduced in porous materials using differents methods (see

Needleman or Leblond). Another method is used here; it is based on a simple extension of the
kinematic (linear and non—linear) hardening model of Lemaitre & Chaboche

— Base model (f = 0)
The dissipation potential Ψ is introduced as follows (linear hardening corresponds to D/C = 0)

Ψ =

√
3
2

(σ −X)′ : (σ −X)′ − k +
3
4

D

C
X : X + . . .

X =
2
3
Cα

α̇ = −λ̇
∂Ψ
∂X

= ε̇p −
3
2
λ̇

D

C
X = λ̇

(
n− 3

2
D

C
X

)
(11)

— Modified model (f 6= 0)
The dissipation potential is now written as

Ψ = σ∗ − k + µ
D

C
X2
∗ + . . .

where X∗ is defined by

φ(X, X∗, f) = 0

The linear relation between X and α is given by

X = H

(
2
3
Cα

)
where H is a fourth order tensor depending on f with H(0) = 1. H is defined for each potential.
The evolution of α is determined by

α̇ = −λ̇(1− f)
∂Ψ
∂X

= −λ̇(1− f)

[
∂σ∗
∂σ

∣∣∣∣
σ−X

+ 2µ
D

C
X∗

∂X∗

∂X

∣∣∣∣
X

]

= ε̇p − 2λ̇(1− f)µ
D

C
X∗

∂X∗

∂X

∣∣∣∣
X

this formula must be equivalent to eq. 11 for f = 0. In that case X∗ =
√

3
2X : X (Tr (X) = 0)

and ∂X∗
∂X = 3

2
X
X∗

, so that

α̇ = ε̇p − 3λ̇µ
D

C
X ⇒ µ =

1
2

One finally gets

Ψ = σ∗ − k +
D

2C
X2
∗ + . . .

α̇ = ε̇p − λ̇(1− f)
D

C
X∗

∂X∗

∂X

Z-set 8.17

POROUS PLASTIC
Porous.h

In order to have an expression similar to eq. 11 one can define an intermediate stress tensor χ as

χ =
2
3
X∗

∂X∗

∂X
α̇ = ε̇p − λ̇

3
2
(1− f)

D

C
χ = (1− f)λ̇

(
n− 3

2
D

C
χ

)

• Adiabatic Heating
Addition of adiabatic heating is simply done by adding a new internal variable: the temperature

T . The evolution of T is related to the plastic dissipation by the relation:

CpṪ = βε̇∼p : σ∼

where CP
p is the heat capacity of the porous material. Indeed CP

p is related to the heat capacity of
the dense material CD

p by
CP

p = (1− f)CD
p

Z-set 8.18

POROUS PLASTIC
Porous.h

Some porous plastic criterion and their derivatives

The following matrices will be used:

V =

2/3 −1/3 −1/3
−1/3 2/3 −1/3 0
−1/3 −1/3 2/3

1
0 1

1

 U =

1 1 1
1 1 1 0
1 1 1

0 0

 In the expression of the

porous potential
φ(σ∼, f, σ?) = 0

, σ∼ is function of J2, the second invariant of the stress deviator tensor, and I1, the first invariant of
the stress tensor :

I1 = Trace
(
σ∼
)

s∼ = σ∼ −
I1
3 1∼

J2 = 1
2s∼ : s∼

In order to extend the application of porous criteria to anisotropic behaviour, it is more adequate
to express σ∼ as a function of σE and σM defined as below :

σM = Trace
(
σ∼
)

σE =
√

3
2s∼ : H : s∼

so that anisotropy of the material behavior is accounted for within the Hill tensor H.
Note that:

σE =
√

3J2

in isotropic case.
Derivatives of the potential can be expressed as follows :
∂φ

∂σ∼
=

∂φ

∂σE
n∼ +

∂φ

∂σM

∂2φ

∂σ∼
2

=

• Gurson criterion

The potential is given by

φ =
σ2

E

σ2
?

+ 2f?q1 cosh
(

q2sigmaM

2σ?

)
− (1 + q2

1f?2)

where
A =

q2I1

2σ?

∂φ

∂σ∼
=

3s∼
σ2

?

+
f?q1q2

σ?
sinh(A)1∼

∂2φ

∂σ∼
2

=
3
σ2

?

V +
f?q1q

2
2

2σ2
?

cosh(A)U

∂2φ

∂σ∼∂f
= f?′ q1q2

σ?
sinh(A)1∼

Z-set 8.19

POROUS PLASTIC
Porous.h

∂φ

∂σ?
= −6J2

σ3
?

− f?q1q2I1

σ2
?

sinh(A)

∂φ

∂f
= 2f?′q1(cosh(A)− q1f

?)

∂2φ

∂σ∼∂σ?
= −

6s∼
σ3

?

− f?q1q2

σ2
?

(
sinh(A) +

q2I1

2σ?
cosh(A)

)
1∼

∂2φ

∂σ?∂f
= −q1q2I1

σ2
?

f?′ sinh(A)

The effective equivalent stress has to be calculated numerically by solving φ = 0 by using an
iterative method (either Newton–Raphson or dichotomy). The following value will be used as initial
value for the iterative process:

σ? ≈
[
3J2 + q1f

?(q2I1/2)2
]1/2

1− q1f?

• Elliptic criterion

The potential is given by:
φ = 3CJ2 + FI2

1 − σ2
?

where F and C are two functions of the porosity f .
∂φ

∂σ∼
= 3Cs∼ + 2FI11∼

∂2φ

∂σ∼
2

= 3CV + 2FU

∂2φ

∂σ∼∂f
= 3C ′s∼ + 2F ′I11∼

∂φ

∂σ?
= −2σ?

∂φ

∂f
= 3C ′J2 + F ′I2

1

∂2φ

∂σ∼∂σ?
= 0∼

∂2φ

∂σ?∂f
= 0

• Rousselier criterion

The potential is given by:

φ =
√

3J2

1− f
+ σ1fD exp

(
I1

3(1− f)σ1

)
− σ?

where σ1 and D are parameters. With

A =
I1

3(1− f)σ1

∂φ

∂σ∼
=

1
1− f

√
3

2
s∼√
J2

+
fD exp(A)
3(1− f)

1∼

∂2φ

∂σ∼
2

=
1

1− f

√
3

2

[
V√
J2

− 1
2
J
−3/2
2 s∼⊗ s∼

]
+

fD exp(A)
9(1− f)2σ1

U

Z-set 8.20

POROUS PLASTIC
Porous.h

∂2φ

∂σ∼∂f
=

1
(1− f)2

√
3

2
s∼√
J2

+
D exp(A)
3(1− f)

[
1 +

f

1− f
+

fI1

3(1− f)2σ1

]
1∼

∂φ

∂σ?
= −1

∂φ

∂f
=
√

3J2

(1− f)2
+ σ1D exp(A)

(
1 +

fI1

3(1− f)2σ1

)
∂2φ

∂σ∼∂σ?
= 0∼

∂2φ

∂σ?∂f
= 0

• Modified Rousselier criterion

The potential is given by:

φ =
√

3J2

1− f
+ σ1fD exp

(
q2I1

3(1− f)σ?

)
− σ?

where q2 and D are parameters. With

A =
q2I1

3(1− f)σ?

∂φ

∂σ∼
=

1
1− f

√
3

2
s∼√
J2

+
fD exp(A)σ1q2

3(1− f)σ?
1∼

∂2φ

∂σ∼
2

=
1

1− f

√
3

2

[
V√
J2

− 1
2
J
−3/2
2 s∼⊗ s∼

]
+

fDq2
2σ1 exp(A)

9(1− f)2σ2
?

U

∂2φ

∂σ∼∂f
=

1
(1− f)2

√
3

2
s∼√
J2

+
Dq2σ1 exp(A)

3(1− f)σ?

[
1 +

f

1− f
+

fq2I1

3(1− f)2σ?

]
1∼

∂φ

∂σ?
= −σ1fDq2I1 exp(A)

3(1− f)σ2
?

− 1

∂φ

∂f
=
√

3J2

(1− f)2
+ σ1D exp(A)

(
1 +

q2fI1

3(1− f)2σ?

)
∂2φ

∂σ∼∂σ?
= −fD exp(A)q2σ1

3(1− f)σ2
?

[
1 +

q2I1

3(1− f)σ?

]
1∼

∂2φ

∂σ?∂f
= −σ1Dq2I1 exp(A)

3σ2
?(1− f)

[
1 +

f

1− f
+

fq2I1

3(1− f)2σ?

]
• Cam–clay criterion

The potential is given by:

φ =
3J2

m2
+
(

I1

3
+ pc

)2

− p2
c − σ2

?

∂φ

∂σ∼
=

3s∼
m2

+
2
3

(
I1

3
+ pc

)
1∼

∂2φ

∂σ∼
2

=
3V

m2
+

2
9
U

∂2φ

∂σ∼∂f
= −

6s∼
m3

m′ +
2
3
p′c1∼

Z-set 8.21

POROUS PLASTIC
Porous.h

∂φ

∂σ?
= −2σ?

∂φ

∂f
=

2
3
I1p

′
c −

6J2

m3
m′

∂2φ

∂σ∼∂σ?
= 0∼

∂2φ

∂σ?∂f
= 0

Z-set 8.22

MMC
MMC.h

MMC

• Mean field model

Let σc and εc be the stress and the total deformation of the composite. Each phase (i = 0, . . . , n)
is characterized by its volume fraction ci, its stress tensor σi and its deformation tensor εi. The
phase 0 corresponds to the matrix. On has

σc =
∑

i

ciσi εc =
∑

i

ciεi

∑
i

ci = 1

The deformation of each phase can be separated into an elastic deformation and a “free” deformation
(εl

i) which correspond for an elastic material to thermal dilation and phase transformation. On
therefore has

εi = C−1
i σi + εl

i (12)

where Ci represents the elasticity operator of phase (i). For each phase one defines the incompati-
bility deformation with respect to the matrix

εin
i = εl

i − εl
0 +

(
C−1

i −C−1
0

)
σi (13)

The difference between the deformation of the matrix and of the inclusion (i) is related to the
incompatibility deformation by

εi − ε0 = Siε
in
i

= Si

(
εl
i − εl

0 +
(
C−1

i −C−1
0

)
σi

)
(14)

where Si is the Eshelby operator of phase (i). One can define S0 as I. Let Ki be

Ki =
[
C−1

i − Si

(
C−1

i −C−1
0

)]−1
(15)

with K0 = C0. Combining 12 and 14, one gets

εi − ε0 = C−1
i σi −C−1

0 σ0 + εl
i − εl

0

= Si

(
εl
i − εl

0

)
+ Si

(
C−1

i −C−1
0

)
σi

or

σi = KiC−1
0 σ0 + Ki (Si − I)

(
εl
i − εl

0

)
∀i (16)

Letγi be

γi = Ki (Si − I)
(
εl
i − εl

0

)
γ0 = 0

and

σc =
∑

i

ciσi =

[∑
i

ciKi

]
C−1

0 σ0 +
∑

i

ciγi

Let γc and Kc be

γc =
∑

i

ciγi and Kc =

[∑
i

ciKi

]
Then

σ0 = C0K−1
c (σc − γc)

Z-set 8.23

MMC
MMC.h

Using 16, one gets for phase

σi = KiK−1
c (σc − γc) + Ki (Si − I)

(
εl
i − εl

0

)
(17)

= KiK−1
c (σc − γc) + γi

the deformation

εi = C−1
i KiK−1

c (σc − γc) + C−1
i γi + εl

i

The deformation of the composite is then equal to

εc =
∑

i

ciεi =

[∑
i

ciC−1
i Ki

]
K−1

c (σc − γc) +
∑

i

ciC−1
i γi +

∑
i

ciε
l
i (18)

Without “free” deformations the previous formula gives

εc =

[∑
i

ciC−1
i Ki

]
K−1

c σc

The elasticity operator of the composite is then equal to

Cc =

[∑
i

ciKi

][∑
i

ciC−1
i Ki

]−1

= Kc

[∑
i

ciC−1
i Ki

]−1

Considering thermal deformation as “free” deformation (εl
i = ∆Tαi) in absence of external stress

(σc = 0) one gets

αc = −C−1
c

[∑
i

ciKi (Si − I) (αi − α0)

]
+
∑

i

ciC−1
i Ki (Si − I) (αi − α0) +

∑
i

ciαi

=
∑

i

ci

[
αi +

(
C−1

i −C−1
c

)
Ki (Si − I) (αi − α0)

]

• Plasticity

It is assumed that the thermo—elastic of the different phase are constant (Ci et αi). Inclusions
are elastic and the matrix has a plastic behavior. The strain rate of the composite ε̇c is suppose to
be known (FEM formulation). The “free” deformations are then given by

matrix ε̇l
0 = ε̇p

0 + ε̇th
0 inclusions ε̇l

i = ε̇th
i

where ε̇p
0 plastic formation rate of the matrix and ε̇th

i = Ṫαi. Eq. 18 are be used using the following
differential formulation

ε̇c = C−1
c

(
σ̇c −

∑
i

Ki (Si − I)
(
ε̇l
i − ε̇l

0

))
+
∑

i

ciC−1
i Ki (Si − I)

(
ε̇l
i − ε̇l

0

)
+
∑

i

ciε̇
l
i

Z-set 8.24

MMC
MMC.h

σ̇c can then be computed

σ̇c = Cc

[
ε̇c −

∑
i

ciC−1
i Ki (Si − I)

(
ε̇l
i − ε̇l

0

)
−
∑

i

ciε̇
l
i

]
+
∑

i

Ki (Si − I)
(
ε̇l
i − ε̇l

0

)
︸ ︷︷ ︸

γ̇c

then σ̇i

σ̇i = KiK−1
c (σ̇c − γ̇c) + Ki (Si − I)

(
ε̇l
i − ε̇l

0

)
and the deformation in each phase

ε̇i = C−1
i σ̇i + ε̇l

i

• Modification of the plasticity formulation

It is however well known the previous formulation leads to a strong overestimation of the stresses
in the composite material. This problem can be solved using the secant (or tangent) modulus of
the matrix instead of its elasticity operator C0. This solution cannot be used for non–proportional
loading paths with are usually found in FE calculations.

A solution to this problem consists in the introduction of an intermediate internal variable β0

equivalent to a deformation and whose evolution is given by

β̇0 = Θ(ε̇p
0, β0) + ε̇th

0 so that ‖β0‖ ≤ ‖εp
0‖

β̇0 replaces ε̇p
0 in the previous equations. The fact that ‖β0‖ ≤

∥∥εl
0

∥∥ allows to reduce the incompati-
bilities between the matrix and the inclusions, and that consequently be used to model the stresses
of the composite. Eq. (12) is still valid

ε̇i = C−1
i σ̇i + ε̇l

i

For each phase the incompatibility deformation rate is given by

ε̇in
i = β̇l

i − β̇l
0 +

(
C−1

i −C−1
0

)
σ̇i (19)

With β̇l
i = Ṫαi for i 6= 0. By analogy with eq. 14, one relates the difference the corrected

deformation in the matrix and the inclusions by(
C−1

i σ̇i + β̇l
i

)
−
(
C−1

0 σ̇0 + β̇l
0

)
= Siε̇

in
i = Si

(
β̇l

i − β̇l
0 +

(
C−1

i −C−1
0

)
σ̇i

)
as before one gets

σ̇i = KiC−1
0 σ̇0 + Ki (Si − I)

(
β̇l

i − β̇l
0

)
∀i

γ̇i is now defined as

γ̇i = Ki (Si − I)
(
β̇l

i − β̇l
0

)
γ̇0 = 0 γ̇c =

∑
i

ciγ̇i

and

σ̇c =
∑

i

ciσ̇i =

[∑
i

ciKi

]
C−1

0 σ̇0 +
∑

i

ciγi

Z-set 8.25

MMC
MMC.h

then

σ̇i = KiK−1
c (σ̇c − γ̇c) + γ̇i i = 0, . . . , n

and for deformations (ε̇l
0 is used here)

ε̇i = C−1
i KiK−1

c (σ̇c − γ̇c) + C−1
i γ̇i + ε̇l

i

The deformation rate of the composite is then equal to

ε̇c =
∑

i

ciε̇i =

[∑
i

ciC−1
i Ki

]
K−1

c (σ̇c − γ̇c) +
∑

i

ciC−1
i γ̇i +

∑
i

ciε̇
l
i

so that the stress rate is given by

σ̇c = Kc

[∑
i

ciC−1
i Ki

]−1(
ε̇c −

∑
i

ciC−1
i γ̇i −

∑
i

ciε̇
l
i

)
(20)

• Implementation

– Internal variables

Internal variables representative of the materials state are

V = [[β0] , [ε
e
0, h0] , [εe

1] , . . . , [ε
e
n]]

where εe
i represents the elastic deformation of each phase and h0 “hardening” variables of the

matrix. These can include isotropic and kinematic hardening but also damage variables.

• Integration

Integration of the constitutive equations will be done using a Runge—Kutta method according
to the following steps.

1. Calculation of ε̇c = ∆ε/∆t

2. Call of the Runge–Kutta integration method

(a) Calculation of ε̇p
0 = ε̇p

0(ε
e
0, h0) and ḣ0 = ḣ0(εe

0, h0)

(b) Calculation of β̇i and ε̇l
i

(c) Calculation de σ̇c (eq. 20)

(d) Calculation of σ̇i

(e) Calculation of ε̇e
i = C−1

i σ̇i

(f) Building V̇

3. Once the integration is performed one computes σc. The consistent stiffness matrix is taken
equal as Cc

Z-set 8.26

Chapter 9

Gen-Evp

Z-set 9.1

gen evp

gen evp

Description:
The “gen evp” behavior is actually a system of behaviors, and material pieces which fit together.
The main BEHAVIOR instance is really broken up into 3 levels, NL M TLE B SD which derives from
BEHAVIOR, RUNGE INTEGRATOR, and THETA INTEGRATOR. The next class is GEN NL M B SD
and then GEN NPOT M B SD. The levels of class can be considered legacy structure at this point;
there is no real reason to have such a hierarchy. Another gen-evp type implementation is in
REDUCED PLASTIC

GEN_VISCO
BEHAVIOR

GLOBAL_HANDLER
(Flux−Grad)
Localize stress to
 potentialsStorage

POTENTIAL

Inelastic Strain

INTERACTION

Couple pot−pot or
Global−pot, etc

Data-storage:
The only real task handled in the gen_evp behavior itself is

The global handler:
The “global handler” class is responsible for the grad-flux (primal dual) variable relationship, and
for localizing the global variables to the different potentials (e.g. calculating an effective stress in
damage mechanics, or the grain stress in a polycrystal). Normally the handler carries a number of
integrated variables, such as εel or damage d, etc.

Potentials:

Hi = Mijhj

Members:

m glob The global handler.

m f vec, m d chi, m f 0, m f grad The global handler.

delta param

curr time incr

Methods:

operator() returns the pointer contained within.

Z-set 9.2

gen evp

operator* returns the data pointed to by the pointer.

if null tells if the pointer held is NULL (which it is until something is set in the PTR).

if not null tells if the pointer held is not NULL.

erase delete the pointer and reset it to NULL.

dont delete flags the class to skip the auto-deletion (which can cause a problem if the data gets
deleted elsewhere).

swap pointer swaps pointers between PTR objects.

Z-set 9.3

Chapter 10

Utility mesh

Z-set 10.1

UTILITY MESH
Utility mesh.h

UTILITY MESH

Description:
The utility mesh is the base class holding the pure geometrical mesh entities, and is used directly
for visualization in Zmaster and manipulated directly by the Mesher modules.

Please do not use any function assuming a single dimension for the mesh. The
dimension variable is left for compatibilty, and should be set to the maximum dimension of the
mesh. One should use get space type instead.

ZCLASS2 UTILITY_MESH {
protected :

public :
STRING given_name, fzebulon, pb_name;

UTILITY_MESH_READER* mesh_reader;
UTILITY_RESULTS_DATABASE* results_part;
UTILITY_INP_FILE* input_file;

LIST<STRING> elset_for_section, section_name;
BUFF_LIST<UTILITY_NODE*> nodes;
BUFF_LIST<UTILITY_ELEMENT*> elements;
BUFF_LIST<UTILITY_NSET*> nsets;
BUFF_LIST<UTILITY_ELSET*> esets;
BUFF_LIST<B_UTILITY_SET*> bsets;
BUFF_LIST<UTILITY_IPSET*> ipsets;

UTILITY_MESH();
UTILITY_MESH(const STRING&);
virtual ~UTILITY_MESH();
void set_name(const STRING&);

void remove_orphan_nodes();
void reestablish_connectivity();
void reassign_numbers();
void reassign_pointers();
UTILITY_NODE* find_node_with_id(int id, bool issue_error=TRUE);
UTILITY_ELEMENT* find_elem_with_id(int id, bool issue_error=TRUE);
UTILITY_NSET* get_nset(const STRING&,bool issue_error=TRUE);

virtual bool results_load(STRING format);
virtual void load(STRING format);
virtual void write_zebulon(STRING format);

virtual bool verify();
virtual void reset(void);

virtual void read_z7_geom(ASCII_FILE&);
virtual void read_z7_section(ASCII_FILE&);
virtual void read_z7_group(ASCII_FILE&);
virtual void read_z7_nset(ASCII_FILE&);
virtual void read_z7_bset(ASCII_FILE&);
virtual void read_z7_elset(ASCII_FILE&);

Z-set 10.2

UTILITY MESH
Utility mesh.h

virtual void read_z7_ipset(ASCII_FILE&);
virtual void sort_nset(ASCII_FILE&);

virtual void element_renumbering(ARRAY<int> &order);
virtual void node_renumbering(ARRAY<int>& order);

static int get_nb_integration_point(const STRING&);
static GEOM_TYPE get_geom_type(const STRING&);
static int get_nb_node(const STRING&);
static int get_dimension(const STRING&);
static INTEGRATION_MODE get_integration_mode(const STRING&);
static SPACE_TYPE get_space_type(const STRING&);

};

Class Use:

Creators and initialization:
The startup of the mesh creation is a bit odd and difficult to follow because of the different uses
of the class for different applications. Fortunately is is rather rare at this point to need to modify
this creation. The problem stems mostly from the fact that the creation of a Zebulon mesh has not
yet been abstracted to a mesh reader class.

Major components:

mesh reader the class which handles reading and writing of the mesh if it is not a Zebulon native
format. This gets assigned when doing an import or export in the mesher or in Zmaster.

results part A “Results Database” to handle putting results on the mesh. This can be re-
defined along with the mesh reader, which was done for the ABAQUS fil reader / post
processor.

input file A class to handle input file (FEA solution) type items. The Gfm reader uses this,
where at the of reading an UTILITY INP FILE is created, and filled out directly, then the
reader asks the inp file to save itself.

Z-set 10.3

UTILITY ELEMENT
Utility element.h

UTILITY ELEMENT

Description:
Utility elements have different types for the different element geometries. There are many derived
forms in Utility elements.c and Utility_1d_elements.c.

ZCLASS2 UTILITY_ELEMENT {
public :
char type[10];
int space_dim;
BUFF_LIST<UTILITY_ELEMENT*> attached_elements;

int not_displayed;
int num_gp;
ARRAY<UTILITY_BOUNDARY> faces;
ARRAY<UTILITY_BOUNDARY> edges;
ARRAY<UTILITY_NODE*> nodes;
ARRAY<double> r_info;

void write_in(fstream&);
void write_id(fstream& file) { file << " " << id; }

void set_id(int idin) { id = idin; }
int give_id() { return id; }
void set_rank(int rk) { rank = rk; }
int give_rank() { return rank; }
void set_id_rank(int idin);

virtual void add_bsets(B_UTILITY_SET&, BUFF_LIST<UTILITY_NODE*>&);
virtual ARRAY<UTILITY_BOUNDARY>& get_faces();
virtual ARRAY<UTILITY_BOUNDARY>& get_edges();
virtual void check_orientation();

UTILITY_ELEMENT();
UTILITY_ELEMENT(const UTILITY_ELEMENT&);
virtual void initialize(const STRING& the_type);

virtual ~UTILITY_ELEMENT();
void* operator new(size_t) { return (void*)mem_buff.get_ptr(); }
void operator delete(void* oo) { mem_buff.put_ptr((char*)oo); }
static UTILITY_ELEMENT* make(const STRING& the_type);
virtual UTILITY_ELEMENT* element_copy_self();
virtual UTILITY_ELEMENT* copy_to_linear(ARRAY<UTILITY_NODE*>& removed_nodes);

UTILITY_ELEMENT& operator=(const UTILITY_ELEMENT&);
bool operator==(const UTILITY_ELEMENT& in)const { return is_equal(in); }
bool operator!=(const UTILITY_ELEMENT& in)const { return (*this==in) ? FALSE : TRUE; }
virtual void local_draw(GRAPHICS_AREA* ga);
virtual void run_face_setup();
virtual void run_face_setup_disp(const ARRAY<VECTOR>& disp);
virtual void set_ctnod(ARRAY<int>& markers, VECTOR& values);
virtual void set_ctele(VECTOR& values, int& index);
virtual void set_integ(VECTOR& values, int& index);

Z-set 10.4

UTILITY ELEMENT
Utility element.h

virtual int num_contour_vals()const { return !nodes; }
};

Class Use:

Creators and initialization:

Major components:

type Characters for the element key type. e.g. c2d8r, c3d20, s3d6.

attached elements Pointers on attached elements. Established from the mesh
reestablish connectivity function.

num gp number of gauss points. For inspection only.

faces The boundary sets making up the faces. 2D or 3D shells have 2 faces for the top and
bottom. 3D faces should have their nodes ordered to have the normal pointing out of the
element. Not active until the element get faces is called.

edges Line edges of the element. Not active until the element get edges is called.

nodes element nodes, ordered in normal Zebulon ordering.

r info Real info. Thickness, etc.

set id, give id Manipulate the id tags. Default rank + 1.

set rank, give rank Utility mesh sets these up in reestablish connectivity.

set id rank When using set id rank, you pass the ID!! so rank is idin-1.

C3D6:

face 1 0 1 2
face 2 1 4 5 2
face 3 0 3 4 1
face 4 0 2 5 3
face 5 3 5 4

(1)

C3D15:

face 1 0 5 4 3 2 1
face 2 0 1 2 71110 9 6
face 3 2 3 4 8131211 7
face 4 0 6 914138 4 5

face 5 91011121314
(2)

C3D10:

face 1 0 3 1 7 9 6

Z-set 10.5

UTILITY ELEMENT
Utility element.h

face 2 0 5 2 4 1 3
face 3 0 6 9 8 2 5
face 4 2 8 9 7 1 4

(3)

C3D4:

face 1 0 1 2
face 2 1 3 2
face 3 0 2 3
face 4 0 3 1

(4)

C3D8:

face 1 0 1 2 3
face 2 1 5 6 2
face 3 3 2 6 7
face 4 4 0 3 7
face 5 4 5 1 0
face 6 5 4 7 6

(5)

C3D20:

face 1 0 1 2 3 4 5 6 7
face 2 2 914151610 4 3
face 3 6 5 41016171811
face 4 0 7 611181912 8
face 5 0 8121314 9 2 1
face 6 1219181716151413

(6)

Z-set 10.6

UTILITY NODE
Utility node.h

UTILITY NODE

Description:
Utility nodes are a concrete type for nodal information storage. There is no need for derived types.
Their connectivity to elements is done by the utlity mesh reestablish_connectivity function.

ZCLASS2 UTILITY_NODE {
public :

VECTOR position;

BUFF_LIST<UTILITY_ELEMENT*> attached_elements;

bool read(ASCII_FILE&,int);
bool read_old(ASCII_FILE&,int);
void write_in(fstream&);
void write_id(fstream& file);

void set_id(int idin):
int give_id();
void set_rank(int rk);
int give_rank();
void set_id_rank(int idin);

UTILITY_NODE();
UTILITY_NODE(const UTILITY_NODE&);
~UTILITY_NODE() { }

UTILITY_NODE& operator=(const UTILITY_NODE&);
UTILITY_NODE& operator=(const Complex&);
bool operator==(const UTILITY_NODE&)const;
bool operator!=(const UTILITY_NODE& in)const;

};

double distance(const UTILITY_NODE&,const UTILITY_NODE&);

Class Use:

Manipulate the data freely here.

Major components:

position A vector with the node position.

attached elements List of the elements holding this node. One can get nearby nodes then with
the attached elements attached nodes.

set id, give id Manipulate the id tags. Default rank + 1.

set rank, give rank Utility mesh sets these up in reestablish connectivity.

set id rank When using set id rank, you pass the ID!! so rank is idin-1.

Z-set 10.7

UTILITY BOUNDARY
Utility boundary.h

UTILITY BOUNDARY

Description:
The utility boundaries are used for BSET type items. They are also used for for graphical rendering
of the mesh.

ZCLASS2 UTILITY_BOUNDARY {
public :

enum BTYPES { BTYPE_NONE,
BTYPE_LINE,
BTYPE_QUAD,
BTYPE_T3,
BTYPE_T6,
BTYPE_Q4,
BTYPE_Q8 } type;

static const char* translate(BTYPES type);

ARRAY<UTILITY_NODE*> nodes;

// graphics related.. will only be sized for graphics
// applications.. therefore they don’t add a lot..
// is_shared may be set sometimes... sometimes not
//
ARRAY<GRAPHICS_POINT>* points;
PTR<GRAPHICS_FACE> graphics_face;
short is_shared;
short sharable;

UTILITY_BOUNDARY();
UTILITY_BOUNDARY(const UTILITY_BOUNDARY& in);
virtual ~UTILITY_BOUNDARY();

UTILITY_BOUNDARY& operator=(const UTILITY_BOUNDARY&);
bool operator==(const UTILITY_BOUNDARY&)const;
bool operator!=(const UTILITY_BOUNDARY& in)const;

Class Use:

Major components:

type indicates the geometry type of the face. This can be translated to the character names
used in the geof file (e.g. t3 q8) using translate.

nodes nodes of the face. The mesh handles the storage (creating and deleting) of the nodes.

UTILITY SETUtility set.h

Description:
The set of classes deriving from UTILITY SET are used to hold the information of Zebulon mesh
sets. All set types derive from this class.

Z-set 10.8

UTILITY BOUNDARY
Utility boundary.h

UTILITY SET

I UTILITY SET

UTILITY NSET

UTILITY ELSET

UTILITY IPSET

B UTILITY SET

UTILITY LISET

UTILITY FASET

UTILITY DOTSET

ZCLASS2 UTILITY_SET {
protected :
public :

enum { NSET_CODE, ELSET_CODE, LISET_CODE, FASET_CODE, DOTSET_CODE , IPSET_CODE };

STRING name;
virtual bool verify()const;
virtual int get_type()const=0;
virtual void write_in(fstream&)=0;
virtual ~UTILITY_SET() { }

};

ZCLASS2 I_UTILITY_SET : public UTILITY_SET {
public :
virtual int operator!()const=0;

};

ZCLASS2 UTILITY_NSET : public I_UTILITY_SET {
protected :
public :

BUFF_LIST<UTILITY_NODE*> nodes;

UTILITY_NSET() { }
UTILITY_NSET(const UTILITY_NSET& in) : nodes(in.nodes) { name=in.name; }
int operator!()const { return !nodes; }
int get_type()const { return UTILITY_SET::NSET_CODE; }
virtual void write_in(fstream&);

};

ZCLASS2 UTILITY_ELSET : public I_UTILITY_SET {
public :

BUFF_LIST<UTILITY_ELEMENT*> elem;

UTILITY_ELSET() { }
UTILITY_ELSET(const UTILITY_ELSET& in);
int operator!()const;
int get_type()const { return UTILITY_SET::ELSET_CODE; }
virtual void write_in(fstream&);

};

ZCLASS2 UTILITY_IPSET : public I_UTILITY_SET {

Z-set 10.9

UTILITY BOUNDARY
Utility boundary.h

public :
BUFF_LIST<UTILITY_ELEMENT*> elem;
BUFF_LIST<int> ip;

UTILITY_IPSET(){}
~UTILITY_IPSET() {}
int operator!()const;
int get_type()const { return UTILITY_SET::IPSET_CODE; }
virtual void write_in(fstream&);
void add_ip(UTILITY_ELEMENT* e, int i);

};

Class Use:

Z-set 10.10

B UTILITY SET

B UTILITY SET

class BSET_TAG {
public :

char dat[5];
BSET_TAG();
BSET_TAG(const char* str);
BSET_TAG(STRING str);

BSET_TAG& operator=(const STRING& str_in);
BSET_TAG& operator=(const char* buf_in);

int operator==(const char* str_in)const;
int operator==(const STRING& str_in)const;
int operator==(const BSET_TAG& tag)const;

const char* operator() () const { return (char*)(&dat[0]); }
operator char*()const { return (char*)(&dat[0]); }
operator STRING()const { return STRING(dat); }

};

ZCLASS2 B_UTILITY_SET : public UTILITY_SET {
public :

BUFF_LIST< ARRAY<UTILITY_NODE*>* > lnode;
BUFF_LIST<BSET_TAG> type;

B_UTILITY_SET() { }
B_UTILITY_SET(const B_UTILITY_SET& in);
virtual B_UTILITY_SET* copy_self();

void add(const UTILITY_BOUNDARY& bnd);
void add(BUFF_LIST<UTILITY_BOUNDARY*>& bnd);

virtual void write_in(fstream&);
virtual ~B_UTILITY_SET();

};

ZCLASS2 UTILITY_FASET : public B_UTILITY_SET {
public :
UTILITY_FASET() { }
UTILITY_FASET(const UTILITY_FASET& in) : B_UTILITY_SET(in) { }
virtual B_UTILITY_SET* copy_self() { return new UTILITY_FASET(*this); }

int get_type()const { return UTILITY_SET::FASET_CODE; }

};

ZCLASS2 UTILITY_DOTSET : public B_UTILITY_SET {
public :

Z-set 10.11

B UTILITY SET

UTILITY_DOTSET() { }
UTILITY_DOTSET(const UTILITY_DOTSET& in) : B_UTILITY_SET(in) { }
virtual B_UTILITY_SET* copy_self() { return new UTILITY_DOTSET(*this); }

int get_type()const { return UTILITY_SET::DOTSET_CODE; }
};

Z-set 10.12

GEOM TYPE
Geometry.h

GEOM TYPE

Description:
This file holds some global enumeration values used to specify characteristics of the space and
geometries.

enum INTEGRATION_MODE {
NO_INTEGRATION,
GAUSS_POINT_INTEGRATION

};

enum GEOM_TYPE {
NO_GEOMETRY,
_1DOT,
_2DOT,
_3DOT,
_1D,
_SPH,
_CYL,
_2D,
_AXI,
_3D,
_SPR1

};

enum SPACE_TYPE {
ST_SPACE,
ST_SURFACE,
ST_LINE,
ST_DOT,
ST_SHELL,
ST_BEAM

};

Z-set 10.13

UTILITY MESH READER
Utility mesh reader.h

UTILITY MESH READER

Description:
An abstract class for making a new mesh import format.

ZCLASS2 UTILITY_MESH_READER {
protected :
public :

UTILITY_MESH* its_mesh;

UTILITY_MESH_READER();
virtual ~UTILITY_MESH_READER();

virtual void initialize(ASCII_FILE& file, UTILITY_MESH* mesh);
virtual void write(STRING fname);

};

Z-set 10.14

UTILITY RESULTS DATABASE
Utility results database.h

UTILITY RESULTS DATABASE

Description:
This class is the mechanism for grabbing results to display from a certain format of results file. It
is currently far from general, and should be seriously re-designed. It should also be used as the
interface to the data within the Post processor, which it is not.

ZCLASS2 UTILITY_RESULTS_DATABASE {
public :

int if_linear_solution;
STRING pb_name;
LIST<STRING> mesh_names;

UTILITY_MESH* active_mesh;
int mesh_changed;

LIST<double> map; // the times are stored here.

enum LOCATIONS {
RENDER=1,
CTNOD=2,
CTELE=4,
CTMAT=8,
INTEG=16,
VECTR=32,
DISPL=64,
VELOC=128,
VELOC3D=256

};
//
// The "get" functions set these up... they may set up the
// data differently for each type of data query.. NEED DOCUMENTAITON
//
MARRAY<VECTOR> disp; // #nodes, dimension
VECTOR node_val; // # nodes ...
double exact_map;

ARRAY<int> ct_marker; // Contour marker.

UTILITY_RESULTS_DATABASE();

virtual ~UTILITY_RESULTS_DATABASE();
virtual void initialize(const STRING& problem_name);
static UTILITY_RESULTS_DATABASE* make(STRING format, const STRING& problem_name);

virtual bool do_command(STRING cmd);

//
// Default error messages..
//
virtual bool get_node_results_through_time(UTILITY_NODE* node,

STRING cname, int where);
virtual bool get_integ_results_through_time(UTILITY_ELEMENT* ele, int gp, STRING cname);

Z-set 10.15

UTILITY RESULTS DATABASE
Utility results database.h

virtual bool get_results_at_time(double when, STRING cname, int where);
virtual bool get_nodal_displacements(int map, STRING stub);
virtual bool get_ctnod_results(int map, STRING comp);
virtual bool get_ctele_results(int map, STRING comp);
virtual bool get_ctmat_results(int map, STRING comp);
virtual bool get_integ_results(int map, STRING comp);

virtual void generate_location_list(int& all_location_flags);
virtual void generate_node_variable_list(LIST<STRING>&);
virtual void generate_integ_variable_list(LIST<STRING>&);

static bool small_diff(double d1, double d2);
};

Class Use:

Z-set 10.16

UTILITY UT FILE
Utility ut file.h

UTILITY UT FILE

Description:
This is a class for storing the information from the .ut file. The utility results database uses this
internally.

ZCLASS2 UTILITY_UT_FILE {
protected :
public :

UTILITY_UT_FILE();
UTILITY_UT_FILE(ASCII_FILE& file);
virtual ~UTILITY_UT_FILE();

void read(ASCII_FILE& file);

int if_linear_solution;

STRING pb_name;
STRING meshfile;
STRING ctmat_suff, node_suff, integ_suff;
STRING ctele_suff;
STRING ctnod_suff;
LIST<STRING> node;
LIST<STRING> integ;
LIST<STRING> element;

LIST<double> map; // the times are stored here.
LIST<STRING> map_m_file; // this is so the mesh can change

};

Z-set 10.17

UTILITY INP FILE
Utility input file.h

UTILITY INP FILE

Description:
A class to hold information from the FEA calculation input file. At the time of writing (02/2000)
this is not close to being complete. A mesh reader can use this to build up data for how to run the
calculation. Manipulate the records directly.

class UTILITY_BC {
public :

enum TYPE {
IMPOSE_NODAL_DOF,
IMPOSE_NODAL_REACTION,
CENTRIFUGAL

} type;

STRING set;
STRING DOF;
double value;
STRING tab;

};

class UTILITY_MAT_FILE {
public :

};

class UTILITY_SEQUENCE {
public :
LIST<double> time;
LIST<int> incr;

};

class UTILITY_TABLE {
public :
int id;
STRING name;
LIST<double> time;
LIST<double> values;

};

class UTILITY_INP_FILE {
protected :
public :

UTILITY_MESH* its_mesh;

BUFF_LIST<UTILITY_BC*> bc;
BUFF_LIST<UTILITY_MAT_FILE*> mat;
BUFF_LIST<UTILITY_SEQUENCE*> seq;
BUFF_LIST<UTILITY_TABLE*> tab;

UTILITY_INP_FILE();
virtual ~UTILITY_INP_FILE();

Z-set 10.18

UTILITY INP FILE
Utility input file.h

virtual void load(ASCII_FILE& input);
virtual void write(Zofstream& output);

virtual void read_bc(ASCII_FILE& input);
virtual void read_table(ASCII_FILE& input);
virtual void read_resolution(ASCII_FILE& input);

};

Z-set 10.19

MECHANICAL BFGS ALGORITHM
Algorithm.h

MECHANICAL BFGS ALGORITHM

Implementing B.F.G.S. method for mechanical problems

•Generalities

In the B.F.G.S. method are implemented :
— an algorithm used to update the global stiffness matrix without new assembling
— a conjugated (??) gradient method to optimize the d.o.f. increment at each iteration.
The method may start at any iteration, the global matrix being no longer computed after

starting. This first iteration is given by the user. The method needs at least two successive residual
vectors and a solution vector. From the initial residual vector R0 and the initial global stiffness
matrix K0, a computation of the first solution and of a new residual can be made:

δ1 = (K0)−1R0

R1 = Ψ(δ1)

The method is then initiated from R0, R1, δ1. Generally speaking:

δi = (Ki−1)−1Ri−1; Ri = Ψ(δi)

The method uses Ri−1, Ri and δi to find δi+1.

•Matrix updating

The matrix (Ki)−1 is updated from the following formula:

(Ki)−1 = (I + wi ⊗ vi)(Ki−1)−1(I + vi ⊗ wi)

with:

vi =
[
1 +

√
gi−1 − gi

gi−1

]
Ri−1 −Ri ; wi =

δi

∆gi

gi = δiRi ; gi−1 = δiRi−1 ; ∆gi = gi − gi−1

This algorithm can be rewritten :

δi+1 = (I + wi ⊗ vi) . . . (I + w1 ⊗ v1)(K0)−1(I + v1 ⊗ w1) . . . (I + vi ⊗ wi)Ri

The computation is then made in three steps:
— calculation of a pseudo-residual vector:

R∗i = (I + v1 ⊗ w1) . . . (I + vi ⊗ wi)Ri

— computation of a pseudo-solution:

δ∗i+1 = (K0)−1R∗i

— computation of the d.o.f. increment:

δi+1 = (I + wi ⊗ vi) . . . (I + w1 ⊗ v1)δ∗i+1

Z-set 10.20

MECHANICAL BFGS ALGORITHM
Algorithm.h

• Notes:

• The updating should not be made if this operation destroy the numerical conditioning. This
will be controlled by computing the eigenvalue√

δ1Ri−1

δi(Ri −Ri−1)

and avoiding the update procedure if it is greater than 1014.

• The update procedure is simply made by two actions:
— store two vectors vi and wi, the size of which is the total number of d.o.f.,
— increment the index which memorizes the number of updating.

• The maximum number of updating in an increment is 15. If more iterations are needed to
complete an increment, the method restart from the initial (K0)−1 matrix for iterations 16,
31, . . .

•Conjugated gradient method

After each resolution, a scalar parameter α is optimized to make the successive increments
“perpendicular”, in the norm defined by the stiffness matrix:

δi+1Ri+1 = 0, with Ri+1 = Ψ(ui + αδi+1)

so that:
δi+1Ki+1δi+2 = 0

The value of α is found by dichotomy.

Z-set 10.21

E2 5
E2 5.h

E2 5

Generalized Degree Of Freedom Element (2.5D)

6 generalized degrees of freedom element
displacement field is given by

~u (x, y, z) = ~u0 (x, y, z) + u1 (x, y)

where ~u0 is given by

~u0 (x, y, z) = z

(
~t + ~w∧

−→
OM

)
z corresponds to the third direction. O is the center of gravity of the 2D structrure. Both vectors
~t and ~w are given by

~t =

 t1
t2
t3

 ~w =

 w1

w2

w3

t1 . . . t3 and w1 . . . w3 are the 6 generalized degrees of freedom. The displacement field is given by

ux = ux
1 + zt1 − w3 (y − Y0) z

uy = uy
1 + zt2 + w3 (x−X0) z

uz = uz
1 + zt3 + w1 (y − Y0) z − w2 (x−X0) z

All computations are done for z = 0. Let q = (qx
1 , qy

1 , . . . , qx
n, qy

n) be the vector of nodal displace-
ments. Deformations are given by

εxx =
∑

i

∂Ni

∂x
qx

εyy =
∑

i

∂Ni

∂y
qy

εzz = t3+w1 (y − Y0)− w2 (x−X0)

√
2εxy =

1√
2

(∑
i

∂Ni

∂x
qy +

∑
i

∂Ni

∂y
qx

)
√

2εyz =
1√
2

(t2 + w3 (x−X0))

√
2εzx =

1√
2

(t1 − w3 (y − Y0))

so that one gets

ε̄ =

Bxx 0 0 0 0 0 0
Byy 0 0 0 0 0 0
Bzz 0 0 1 ∆y −∆x 0
Bxy 0 0 0 0 0 0
0 0 1/

√
2 0 0 0 ∆x/

√
2

0 1/
√

2 0 0 0 0 −∆y/
√

2

q
t1
t2
t3
w1

w2

w3

= BQ

where B is the usual matrix for small deformations plane strain problems and ∆x = x − X0,
∆y = y − Y0. The element stiffness matrix is given by

Ke =
∫

V

BT DBdv

Z-set 10.22

E2 5
E2 5.h

and internal forces by

Fi =
∫

V

BT σ̄dv

The last three terms of Fi correspond to reactions associated to the 6 generalized degrees of freedom.

Fi(t1) =
∫

v

σzxdv

Fi(t2) =
∫

v

σyzdv

Fi(t3) =
∫

v

σzzdv

Fi(w1) =
∫

v

(y − Y0)σzzdv

Fi(w2) =
∫

v

− (x−X0)σzzdv

Fi(w3) =
∫

v

[(x−X0)σyz − (y − Y0)σzx] dv

Z-set 10.23

MINDLIN SHELL
Mindlin shell.c

MINDLIN SHELL

• 3D mechanical shell elements
• Geometry
The shell is geometrical described with (x position):

x(η1, η2, z) = xp(η1, η2) + zn(η1, η2)

where z represents the position in the thickness direction. xp is the mapping of the mid–plane and
n the normal to the shell. Differentiating the previous equation gives:

dx =
(

∂xp

∂η1
+ z

∂n

∂η1

)
dη1 +

(
∂xp

∂η2
+ z

∂n

∂η2

)
dη2 + ndz

= a1dη1 + a2dη2 + z

(
∂n

∂η1
dη1 +

∂n

∂η2
dη2

)
+ ndz

= a′1dη1 + a′2dη2 + ndz

with

ai =
∂xp

∂ηi
and a′i = ai + z

∂n

∂ηi

ai’s are tangent to the mid–plane. a′i’s account for variable thickness. F is defined as:

F =
[
a′1

...a′2
...n
]

An orthogonal local base can be defined as:

t
′
1 = a′1/|a′1|

t
′
2 = n′ ∧ t

′
1

n′ = (a′1 ∧ a′2)/|a′1 ∧ a′2|

an the rotation tensor:

Q′ =
[
t
′
1

...t′2
...n′
]

For the mid–plane, one defines:

t1 = a1/|a1|
t2 = n ∧ t1

n′ = (a1 ∧ a2)/|a1 ∧ a2|

an the rotation tensor:

Q =
[
t1

...t2
...n
]

• Kinematics
The displacement is given by:

u(η1, η2, z) = up(η1, η2) + zβ(η1, η2)

with

β.n = 0

Z-set 10.24

MINDLIN SHELL
Mindlin shell.c

β is expressed as β1t1 + β2t2 in the local shell base and as βiei (i = 1 . . . 3) in the cartesian base.
In this base, the displacement vector is expressed as:

u(η1, η2, z) = Ui(η1, η2)ei + z (βi(η1, η2)ei)

Deformation is computed as:

∂ui

∂xj
=

(
∂Ui

∂η1

∂η1

∂xj
+

∂Ui

∂η2

∂η2

∂xj

)
+z

(
∂βi

∂η1

∂η1

∂xj
+

∂βi

∂η2

∂η2

∂xj

)
+

∂z

∂xj
βi

Note that ∂z
∂xj

= 0 for shell having a constant thickness.
• FE discretization of the geometry
Let Nk(η1, η2) is the shape function associated to node k. The position vector is expressed as:

x = NkX
k

+ ζNkhknk ζmin ≤ ζ ≤ ζmax

where X
k

is the position of node k, hk the thickness at node k and nk the shell normal at node
k. (ζmax− ζmin)Nkhk is the local shell thickness. One also has: z = ζNkhk = ζh(η1, η2). The local
base can be computed:

a′1 =
∂x

∂η1
= Nk

η1

(
X

k
+ ζH

k
)

a′2 =
∂x

∂η2
= Nk

η2

(
X

k
+ ζH

k
)

n′ =
∂x

∂ζ
= NkH

k

Note that:

dx = F

dη1

dη2

dζ

• FE discretization of the kinematics
The displacement is now written as:

u = NkU
k

+ z(Nkβ
k
)

or

ui(η1, η2, ζ) = NkUk
i + ζ

(
Nkhk

) (
Nkβk

i

)
= NkUk

i + ζh
(
Nkβk

i

)
where Uk

i and βk
i represent nodal values. The transformation gradient is:

∂ui

∂xj
= ui,j =

∂Nk

∂xj
Uk

i

+
(

∂ζ

∂xj

(
Nkhk

)
Nk + ζ

(
∂Nk

∂xj
hk

)
Nk + ζ

(
Nkhk

) ∂Nk

∂xj

)
βk

i

=
∂Nk

∂xj
Uk

i +
(

∂ζ

∂xj
hNk + ζ

∂h

∂xj
Nk + ζh

∂Nk

∂xj

)
βk

i

Z-set 10.25

MINDLIN SHELL
Mindlin shell.c

∂ζ
∂xj

is computed as F−1
3,j . ∂Nk

∂xj
is given by:

∂Nk

∂xj
=

∂Nk

∂η1
F−1

1,j +
∂Nk

∂η2
F−1

2,j

Let 〈U〉 be the vector of nodal unknowns:

〈U〉 =

U1
1
...

U1
3

β1
1
...

β1
3
...

UN
1
...

UN
3

βN
1
...

βN
3

[B] is defined so that the deformation tensor ε (εij = 1

2 (ui,j + uj,i)) is given by:

ε = [B] 〈U〉

the local shell deformation εL is obtained by rotation using Q:

εL = Q′T εQ′

• Plane stress condition
The plane stress condition in the direction normal to the shell is usually enforced using a

proper material constitutive equation. This necessitate to rewrite material constitutive equation
specifically for the plane stress condition. In order to overcome this problem, one uses additional
degrees of freedom representing the deformation in the n′ direction: ε33. There is therefore one
additional dof per Gauss point. The local deformation tensor is now expressed as:

εL = Q′T εQ′ + ε33J

or

ε = [B] 〈U〉+ ε33Q
′JQ′T

with

J =

0 0 0
0 0 0
0 0 1

The elements unknown are: the nodal displacements and rotations 〈U〉 and the deformations at-
tached to each Gauss point 〈E〉. Using the previous definition of the strain tensor it is possible
to use the “standard” material constitutive equations to compute the stress tensor σL and the
consistent stiffness matrix DL = ∂σL

∂εL . σ and D are obtained by rotation using Q′.

Z-set 10.26

MINDLIN SHELL
Mindlin shell.c

Reactions are associated to dof’s. 〈F 〉u is the nodal reaction vector associated to 〈U〉 and F p
e

the reaction associated to the pth Gauss point (ωp: associated volume). One has:

〈F 〉u =
∫

Ve

[B]T σdVe =
∑

p

[B]T σωp Fe = σL
33ω

p

The associated element stiffness matrix is given by:

[K]e =
[
[K]uu [K]ue

[K]eu [K]ee

]
with

[K]uu =
∑

p

[B]T D [B]ωp

Kee
pp = DL

33ω
p Kee

ij = 0 if i 6= j

Keu
pj =

∑
i

D3iBijω
p

Kue
ip =

∑
j

BT
ijDj3ω

p

D, DL, [B], σ correspond to the pth Gauss point in the preceeding equations. Subscript p is omitted
for clarity.
• Enforcement of the β.n = 0 condition
Let nk be the vector normal to the shell mid–plane at node k. The β.n = 0 condition is written

as:

Nkβk
i nk

i = 0

In order to enforced this condition one defines θ = β.n and an associated force fθ = αθ where θ is
a penalization factor. θ can be expressed as a function of the nodal unknowns as:

θ = [Ω] 〈U〉

with

[Ω] =
[
0, 0, 0, N1n1

1, N
1n1

2, N
1n1

3, . . . , 0, 0, 0, NNnN
1 , NNnN

2 , NNnN
3

]
Unsing the constitutive relation fθ = αθ associated nodal forces are defined as:

〈F 〉θ =
∫

Ve

fθ [Ω]T dV

and the corresponding element stiffness matrix:

[K]θθ = α

∫
Ve

[Ω]T ⊗ [Ω] dV

which as to be added to [K]uu.
Implementation of the debonding model

References
[1] V. Tvergaard, “Effect of Fiber Debonding in a Whisker–reinforced Metal”, Material Science

and Engineering, A125, 203—213 (1990)
[2] A. Needleman, “A Continuum Model for Void Nucleation by Inclusion Debonding”, Journal

of Applied Mechanics, 54, 525—531 (1987)

Z-set 10.27

MINDLIN SHELL
Mindlin shell.c

One defines an boundary (B) and an nset (N). At the beginning of the calculation the nodes
of each set correspond are at the same location. Two corresponding nodes are use to build a
debounding element. One also defines an contact zone (using soft contact algorithm); warning
distance is set to zero. Its boundary corresponds to B and its nset (C) is empty at the beginning
of the calculation. When a debounding element breaks the node belonging to N is transfered to C.

Each debounding element has a behavior and degrees of freedom corresponding to the displace-
ments of its nodes (β ∈ B and ν ∈ N). The “grad” variable corresponds to the relative displacement
v = uν − uβ . The “flux” variable correspond to the forces. One then computes the projection of
n on B (n′) and the normal to B at n′ (a) pointing outside of the boundary. a and v are defined
so that av = ua > 0, when there is separation between the boundary and the nset. The “tangent”
direction (b) is determined by the projection of v on B.

b =
v − (vn)n
‖v − (vn)n‖

if v//n any vector can be chosen. In 3D the third vector of the local frame (c) is defined as

c = a ∧ b

On can define the column rotation matrix

R(a, b) 2D R = (a, b, c) 3D

R is the orthogonal operator between (a, b, [c]) and (ex, ey, [ez]). In the local frame one computes
the “grad” :

grad = ((vn)n, ‖v − (vn)n‖ , [0]) = (ua, ub, [0])

One then calls the behavior to compute the flux variable

flux = (Ta, Tb, [0])

Behavior ua > 0
The behavior’s internal variable is λmax. One computes λ

λ =

[(
ua

δn

)2

+
(

ub

δt

)2
]1/2

If λ < λmax the flux is computed as follows (elastic unloading)

Ta =
ua

δn
F (λmax)

Tb = α
ub

δt
F (λmax)

otherwise

Ta =
ua

δn
F (λ)

Tb = α
ub

δt
F (λ)

λmax = λ

The consistent stiffness matrix is given as

D =

(
∂Ta

∂ua

∂Ta

∂ub
∂Tb

∂ua

∂Ta

∂ub

)
=
(

Daa Dab

Dba Dbb

)

Z-set 10.28

MINDLIN SHELL
Mindlin shell.c

If λ < λmax one has

Daa =
F (λmax)

δn

Dab = 0
Dba = 0

Dbb = α
F (λmax)

δt

If λ > λmax

Daa =
F (λ)
δn

+
F ′(λ)

δn

1
λ

u2
a

δ2
n

Dab =
F ′(λ)

δn

1
λ

uaub

δ2
t

Dba = α
F ′(λ)

δt

1
λ

uaub

δ2
n

Dbb = α
F (λ)

δt
+ α

F ′(λ)
δt

1
λ

u2
b

δ2
t

Note: Needleman assumes that T derives from a potential φ (ua, ub) so that

Dab =
∂2φ

∂ua∂ub
= Dba =

∂2φ

∂ub∂ua

One therefore has
F ′(λ)

δn

1
λ

uaub

δ2
t

= α
F ′(λ)

δt

1
λ

uaub

δ2
n

⇒ α =
δn

δt

Otherwise D is not symmetric. For 3D problems there is also a third direction which must be
accounted for in the stiffness computation. Indeed uc = 0 and Tc = 0, however some of the partial
derivatives are not null.

∂Ta

∂uc
=

∂Ta

∂ub

∣∣∣∣
ub=0

= 0

∂Tb

∂uc
=

∂Tb

∂ub

∣∣∣∣
ub=0

= α
F (λ)

δt

∂Tc

∂ua
=

∂Tb

∂ua

∣∣∣∣
ub=0

= 0

∂Tc

∂ub
=

∂Tb

∂ub

∣∣∣∣
ub=0

= α
F (λ)

δt

∂Tc

∂uc
=

∂Tb

∂ub

∣∣∣∣
ub=0

= α
F (λ)

δt

Finally one gets

D =

F (λ)
δn

+ F ′(λ)
δn

1
λ

u2
a

δ2
n

F ′(λ)
δn

1
λ

uaub

δ2
t

0

αF ′(λ)
δt

1
λ

uaub

δ2
n

αF (λ)
δt

+ αF ′(λ)
δt

1
λ

u2
b

δ2
t

αF (λ)
δt

0 αF (λ)
δt

αF (λ)
δt

for λ < λmax

D =

F (λ)
δn

0 0
0 αF (λ)

δt
0

0 0 αF (λ)
δt

Z-set 10.29

MINDLIN SHELL
Mindlin shell.c

Behavior ua < 0.
This corresponds to normal compression. In that case

Ta = F (0)
ua

δn

λ =
∣∣∣∣ub

δt

∣∣∣∣
Tb = αF (λmax)

ub

δt
λ < λmax

Tb = αF (λ)
ub

δt
λ > λmax

The stiffness matrix is then

D =

F (0)
δn

0 0
0 αF (λmax)

δt
0

0 0 αF (λmax)
δt

 λ < λmax

D =

F (0)
δn

0 0

0 αF (λ)
δt

+ αF ′(λ)
δt

1
λ

u2
b

δ2
t

αF (λ)
δt

0 αF (λ)
δt

αF (λ)
δt

 λ > λmax

Failure Behavior
Failure occurs when λ = 1. Node ν is transfered to C. This must be done as a postprocessing

after a time increment. It is impossible to have nodes switching from N to C and from C to N .
The transfert can be done for λ slightly inferior to 1.

Back to the element !
The result of the behavior integration is therefore T and D. They both have to be convected

into the element frame using R

T ′ = RT

D′ = RDT R

The stiffness of the element is given by. The force acting on node ν is equal to −T ′ and T ′ on node
β

∂ (−T ′, T ′)
∂(uν , uβ)

= ∆′ =
(
−D′ D′

D′ −D′

)

Spacial integration
The forces (in fact forces per unit area, i.e. pressure) and stiffnesses have to be integrated to get

nodal reactions and element rigidity matrices. Integration is performed using the boundary (B).
Nodal reactions can be calculated has for pressure boundary conditions. Let H be the interpolation
matrix (d × (Nd), with d dimension and N number of nodes of the element) of an element of the
boundary. One has u(x) = H(x)û, where x is the position and û the nodal displacements vector
(size Nd). One has

R̂ =
∫

S

HT (x)T (x)dS =
∫

S

HT (x)H(x) T̂ dS =
[∫

S

HT (x)H(x)dS

]
T̂

Z-set 10.30

MINDLIN SHELL
Mindlin shell.c

The elementary stiffness matrix is obtained as follows. Writting the principle of virtual work for
the boundary one gets

· · ·+ ∆t

∫
S

T (x)u̇(x)dS + . . .

or after differentiation

· · ·+
∫

S

(
∂T

∂u
δu

)
(u̇(x)∆t)︸ ︷︷ ︸dS + . . .

which can be written using the interpolation matrix H and ∂T
∂u = D′

∫
S

δûT HT D′(x)HδûdS = δûT

[∫
S

HT D′(x)HdS

]
δû = δûT

[∫
S

HT

(∑
N

ΨND′
N

)
HdS

]
δû

Finally the stiffness matrix is equal to

Ke =
∫

S

HT (x)

(∑
N

ΨN (x)D′
N

)
H(x)dS

where D′
N is the sitffness matrix for node N , and ΨN (x) the shape function for the same node. The

previous equations are for the nodes of the boundary only. In order to construct the forces and
stiffnesses for all nodes, we consider a special debonding element consisting in (1) the dofs of the
nset N , (2) the nodes of B (there are 2Nd dofs). nodal reaction vector and the stiffness matrix
are [

−R̂

R̂

]
and

[
−Ke Ke

Ke −Ke

]

Implementation

1. Start of the calculation

(a) create debonding super element including B and N

i. create “spring” like elements
ii. create double layered boundary elements (for integration)

(b) create soft contact element

2. Integration : manager is the (iteration) debonding super element

(a) for each “spring” like element compute T ′ and D′, and store them

(b) use double layered boundary elements to perform integration and affect forces and
stiffnesses

3. After convergence, check for broken “springs”. If any transfer ν ∈ N in the contact element.

Z-set 10.31

MECHANICAL RIKS ALGORITHM
Algorithm.h

MECHANICAL RIKS ALGORITHM
— Class is derived from : ALGORITHM
• Implementation of the Riks–Wempner method 1

This method is a modification of the standard Newton–Raphson (NR) method. It is started
after the determinant of the global stiffness matrix becomes non positive (***resolution riks)
or at the beginning if the option always is specified after ***resolution riks.

— For each increment:
∆t the time increment is known.
The algorithm is as follows for iteration i > 0. (∆ indicate increment variations, δ indicate

iterations variations).

• apply boundary conditions

• compute internal reactions and eventually the stiffness matrix K (if_compute_stiffness)

• form FE and FI vectors (external/internal forces)

• compute δuI
i and δuII

i solutions of

KδuII
i = FI KδuI

i = −FE

for the second resolution the inverse of K has to to be computed whatever the value of
if_compute_inverse. If K is not recomputed δuI

i is constant.

• compute δλi as

δλi = − ∆ui−1δu
II
i

∆ui−1δuI
i + ∆λi−1

' −∆ui−1δu
II
i

∆ui−1δuI
i

this enforces
(∆ui−1,∆λi−1) ⊥ (δui, δλi)

• form the solution for the increment as

∆ui = ∆ui−1 + δλiδu
I
i + δuII

i

δui = δλiδu
I
i + δuII

i

∆λi = ∆λi−1 + δλi

— For the first iteration i = 0

• ∆λ0 = 0

• solve system as usual

The previous increment ∆ui−1 has to be stored.

1E. Ramm, “The Riks/Wempner Approach — An extension of the displacement control method in
nonlinear analyses”,

Z-set 10.32

Chapter 11

Z-mat Programming Examples

Z-set 11.1

FLOW example

FLOW example

Description:

Z-set 11.2

ISOTROPIC example

ISOTROPIC example

Description:

Z-set 11.3

Gen-evp example

Gen-evp example

Description:

Z-set 11.4

BEHAVIOR example

BEHAVIOR example

Description:

Z-set 11.5

ZebFront Example 2

ZebFront Example 2

Description:

Z-set 11.6

FLOW example

FLOW example

Description:

Z-set 11.7

Chapter 12

Z-set Programming Examples

Z-set 12.1

BC example 1

BC example 1

Description:

Z-set 12.2

FLOW example

FLOW example

Description:

Z-set 12.3

MPC example

MPC example

Description:

Z-set 12.4

Element example

Element example

Description:

Z-set 12.5

FLOW example

FLOW example

Description:

Z-set 12.6

FLOW example

FLOW example

Description:

Z-set 12.7

FLOW example

FLOW example

Description:

Z-set 12.8

Chapter 13

Index

Z-set 13.1

Index

GEN NL M B SD *, 8.7

ARRAY, 5.3
ARRAY¡T¿

*Array.h, 5.5
ASCII FILE

*File.h, 5.18
Aurriccio-Taylor, 11.6

B UTILITY SET, 10.11
BASIC NL BEHAVIOR

*Basic nl behavior.h, 4.8
BASIC SIMULATOR

*Basic nl simulation.h, 4.11
basic tools, 5.2
BC, 12.2
BEHAVIOR, 11.5

*Behavior.h, 7.12
BFGS, 10.20
binary files, 5.26
boolean, 5.13
boundaries, 10.8
BUFF LIST, 5.10
BUFF LIST¡T¿

*Buffered list.h, 5.10

CARRAY¡T¿
*Array.h, 5.7

class syntax, 1.9
COEFF

*Coefficient.h, 7.19
COEFFICIENT

*Coefficient.h, 7.17
COEFFICIENT MATRIX

*Coefficient matrix.h, 7.21
comments, 1.7
crack like*, 8.16
Creators, 4.4
CRITERION

*Criterion.h, 7.22

DBL REQ, 1.11
debugging, 5.27
Developer Studio, 2.5
DMATRIX

*Matrix.h, 6.11

E2 5
*E2 5.h, 10.22

Element, 12.5
elset, 10.8
endian, 5.26
enum, 1.8
ERROR, 1.11
error, 1.11

faset, 10.11
file *.c, 1.6
file *.h, 1.6
FLOW, 11.2, 11.7, 12.3, 12.6–12.8

*Flow.h, 7.24
FUNCTION

*Function.h, 6.3

GEN NL M B SD
*Gen visco.h, 8.7

GEOM TYPE
*Geometry.h, 10.13

GLOBAL PARAMETER
*Global parameter.h, 5.22

global variables, 1.8, 5.22
GLSTR, 1.11

I UTILITY SET, 10.8
Indexing, 4.4
INPUT ERROR, 1.11
INT REQ, 1.11
INTEGRATION MODE, 10.13
interpreted functions, 6.3
introduction, 1.2
ipset, 10.8
ISOTROPIC, 11.3

LINEAR VISCOELASTIC
*Viscoelasticity.h, 8.9

LINEAR VISCOELASTIC::SHEAR
*Viscoelasticity.h, 8.10

LINEAR VISCOELASTIC::VOLUMIC
*Viscoelasticity.h, 8.11

liset, 10.11

13.2

LIST, 5.3, 5.8
add, 5.8
suppress, 5.8

LIST¡T¿
*List.h, 5.8

lists of objects, 5.8

makefile, 2.3
MATERIAL PIECE

*Material piece.h, 7.2
math tools, 6.2
MATRIX

*Matrix.h, 6.6
MECHANICAL BFGS ALGORITHM

*Algorithm.h, 10.20
MECHANICAL RIKS ALGORITHM

*Algorithm.h, 10.32
MINDLIN SHELL

*Mindlin shell.c, 10.24
MMC

*MMC.h, 8.23
MPC, 12.4

NL M TLE B SD
*Gen visco.h, 8.4

nset, 10.8
nucleation, 8.15

object creation, 5.25

PLIST, 5.9
PLIST¡T¿

*List.h, 5.9
pointers, 5.11
POROUS PLASTIC

*Porous.h, 8.12
POTENTIAL, 11.4
prn, 5.27
PTR¡T¿

*Pointer.h, 5.11

Riks*, 10.32

SHEAR, 8.10
SIMUL MODEL

*Simulator model.h, 4.6
sintering, 8.15
Size checking, 4.4
SMATRIX

*Matrix.h, 6.9
SPACE TYPE, 10.13
standard defines, 5.23
static variables, 1.8
STORED VARIABLE SPEC

*Int variable holder.h, 7.8
STRING

*Stringpp.h, 5.14
strings, 5.14
Sub-objects, 4.4

TENSOR2
*Tensor2.h, 6.12

tensor names, 5.30
text input, 5.18
THERMO LINEAR ELASTIC SD

*Linear elastic.c, 8.2

user projects, 2.3, 2.5
UTILITY BOUNDARY

*Utility boundary.h, 10.8
UTILITY ELEMENT

*Utility element.h, 10.4
UTILITY INP FILE

*Utility input file.h, 10.18
UTILITY MESH

*Utility mesh.h, 10.2
UTILITY MESH READER

*Utility mesh reader.h, 10.14
UTILITY NODE

*Utility node.h, 10.7
UTILITY RESULTS DATABASE

*Utility results database.h, 10.15
UTILITY UT FILE

*Utility ut file.h, 10.17

VEC REQ, 1.11
VECTOR

*Vector.h, 6.16
visible, 5.29
VOLUMIC, 8.11

win proj.exe, 2.5

ZBOOL
*Bool.h, 5.13

Zcc, 2.8
ZebFront, 2.7
zebu getenv, 5.31
Zsetup, 2.3

Z-set 13.3

	Introduction
	Introduction
	Basic rules
	Style, definition
	Errors and messages

	Compiling Utilities
	Zmake
	Zsetup (unix only)
	win_proj.exe (win32 only)
	ZebFront
	Zcc

	zLanguage
	The base language
	Introduction
	Script file format
	Functions
	zLanguage statements
	Debugger
	Object
	Base types
	Predefined objects
	Global objects plot, runge and data_file
	Mesher object

	How to use a Zlanguage script in post_processing ?
	Local post processing
	Global post processing
	Post processing end user objects

	How to use a Zlanguage script to produce parametric meshes ?
	Master zLanguage types
	Memory management
	Interfacing with graphical user interface
	Examples

	How to use a Zlanguage script in optimizer ?
	An example using zLanguage/zMaster and zOptimiser

	How to use a Zlanguage script in post_processing ?

	ZebFront pre-processor
	ZébFront
	Math Object Summary
	SIMUL_MODEL
	BASIC_NL_BEHAVIOR
	BASIC_SIMULATOR
	@Class
	@UserRead
	@StrainPart
	@Derivative
	@CalcGradF

	Basic Tools
	Basic Tools
	Arrays/Lists
	ARRAY<T>
	CARRAY<T>
	LIST<T>
	PLIST<T>
	BUFF_LIST<T>
	PTR<T>
	ZBOOL
	STRING
	ASCII_FILE
	GLOBAL_PARAMETER
	Defines
	Object Factory
	Read/Write Binary
	Debug Prints
	Visible
	Utility functions
	Environment

	Mathematical Tools
	Math Tools
	FUNCTION
	MATRIX
	SMATRIX
	DMATRIX
	TENSOR2
	VECTOR

	Base classes for Material Behaviors
	MATERIAL_PIECE
	STORED_VARIABLE_SPEC
	BEHAVIOR
	COEFFICIENT
	COEFF
	COEFFICIENT_MATRIX
	CRITERION
	FLOW

	Specific behaviors
	THERMO_LINEAR_ELASTIC_SD
	NL_M_TLE_B_SD
	GEN_NL_M_B_SD
	LINEAR_VISCOELASTIC
	LINEAR_VISCOELASTIC::SHEAR
	LINEAR_VISCOELASTIC::VOLUMIC
	POROUS_PLASTIC
	MMC

	Gen-Evp
	gen_evp

	Utility mesh
	UTILITY_MESH
	UTILITY_ELEMENT
	UTILITY_NODE
	UTILITY_BOUNDARY
	B_UTILITY_SET
	GEOM_TYPE
	UTILITY_MESH_READER
	UTILITY_RESULTS_DATABASE
	UTILITY_UT_FILE
	UTILITY_INP_FILE
	MECHANICAL_BFGS_ALGORITHM
	E2_5
	MINDLIN_SHELL
	MECHANICAL_RIKS_ALGORITHM

	Z-mat Programming Examples
	FLOW example
	ISOTROPIC example
	Gen-evp example
	BEHAVIOR example
	ZebFront Example 2
	FLOW example

	Z-set Programming Examples
	BC example 1
	FLOW example
	MPC example
	Element example
	FLOW example
	FLOW example
	FLOW example

	Index

