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Why ?

Phase transformation-mechanics coupling:

© Different morphological evolutions

Base Ni Co-Pt [Le Bouar] Cu-Al-Ni
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Why ?

Phase transformation-mechanics coupling:

& Different morphological evolutions

Ni-Al[Diologent,2004] Cu-Cd [Sullonen]
@ Different kinetics

© Different behaviours (TRIP)
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Existing Approach

Two approaches to describe phase transformation-mechanics
coupling:

1. Macroscopic approach [Leblond et al., 1986, Fischer et al.,
2000]

2. Microscopic approach

® Sharp interface description (front tracking techniques)

@ Diffuse-interface models (phase field) [Khachaturyan,
1983]
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Numerical Methods for Phase Field

B. Appolaire I. Steinbach A. Gaubert

Many numerical methods have been proposed to solve the coupled mechanics-
phase field problems:

@ Finite volume scheme [Appolaire and Gautier, 2003, Furtado et al., 2008].
@ Mixed finite difference-finite element scheme [Steinbach and Apel, 2006].
@ Fourier method [Khachaturyan, 1983, Gaubert et al., 2008].

@ Finite element method
[Ubachs et al., 2005, Schrade et al., 2007, Ammar et al., 2009].
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Aims of the Thesis

The aims of this work is to develop a general framework that
combines standard phase field approaches with a different complex
mechanical behaviour for each phase:

@ To develop a finite element formulation of a fully coupled phase
field/diffusion/mechanical problem.

@ To implement the non-linear elastoplastic phase field model in
the finite element code Zebulon.

@ To solve some elementary initial boundary value problems in
coupled diffusion-elasto-plasticity and validate against
corresponding sharp interface analytical solutions.
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@ Frormulation of a Phase Field/Diffusion/Mechanical Model
@ Principle of Phase Field Method



Principle of Phase Field Method

A. Karma G. Abrivard A. Khatchaturyan

@ The phase field approach is suitable for modeling free boundary problems
(Grain boundaries, interfaces).

@ It avoids to explicitly track the usually geometrically complicated interfaces
during microstructure evolution.

@ It can be applied to a wide range of microstructural evolution problems
related to various materials processes (solidification, precipitation,
coarsening and grain growth and polycrystalline materials...)

@ Phase-field method has been extended and coupled with general
processes of materials science that include dissipation, such that diffusion,
mechanics, dislocation dynamics and fracture.
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Principle of Phase Field Method

Introduction of a phase field variable:

@ Physical motivated (order parameter...).

@ Artificial order to locate the various phases.

This variable is uniform inside a phase or domain
away from the interface (for example 0 and 1) and
varies continuously across the diffuse interface
between different phases.

@ Introduction of a phase field variable.

® Construction of total free energy.

@ Determination of the evolution equation of phase field
@ ldentification of phase field parameters.
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@ Frormulation of a Phase Field/Diffusion/Mechanical Model

@ Mechanical Phase-Field Coupling



Mechanical Phase-Field Coupling

Total Free Energy Functional
F6.6.0) = [ f0.0.0d0 = [ [faé.e)+ 5IV6P] dv
14 |4 2
Chemical Energy Density f.(c, ¢) (Binary alloys) [Kim et al., 1998]
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fap(€) = Skaslc — e,3)” + ba
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Mechanical Phase-Field Coupling

Total Free Energy Functional

o
F(6.V0.0) = [ 096,000 = [ [fa6.0)+ 5I90] do
Chemical Energy Density f.u(c, ¢) (Binary alloys) [Kim et al., 1998]

—

fch(ca¢) = fa"‘ fﬁ +

1
fap(c) = §ka,/6’(c - aa,ﬁ)z +ba,g

Formulation of a Phase Field/Diffusion/Mechanical Model 12/56



Mechanical Phase-Field Coupling

Total Free Energy Functional

o
F6.V0.0) = [ 10.90.0000= [ [1a0.0) + §IV0F] do
Chemical Energy Density f.(c, ¢) (Binary alloys) [Kim et al., 1998]
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~___

Jen(e,0) = h(e) fo+ (1 —h(e)) f3 +

faplc) = %kawg(c —a.p)* + bag where h(¢) = ¢*(3 — 2¢)

Formulation of a Phase Field/Diffusion/Mechanical Model 12/56



Mechanical Phase-Field Coupling

Total Free Energy Functional

o
F6.V0.0) = [ 10.90.0000= [ [1a0.0) + §IV0F] do
Chemical Energy Density f.(c, ¢) (Binary alloys) [Kim et al., 1998]

= &
. —_— \\ —
~ ~ —

N

fen(c,0) = (®) fo+ (1 =h(®)) f3 + Wyg(9)

faplc) = %ka,g(c —a.p)* + bag where h(¢) = ¢*(3 — 2¢)

9(8) = ¢*(1 — ¢)?
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Mechanical Phase-Field Coupling
Specific free energy
Jmeen (€%, V) = fe(€°) + fp(V)

where V set of internal variables and e = ¢ +¢* + &”.

Mechanical dissipation potential
Q(Ua A) = g(gv A) + QP(A)

A: set of thermodynamical force associated with V/

State laws Complementary laws
_ afmech D @
g = 8§E g = ag
_ afmcch Y 7@
A="ov V="%4
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Mechanical Phase-Field Coupling

Total free energy functional:

F(6,Vo,c,e% Vi) /V F(6, V6, c.e" Vi) do

/ |:fch(¢7 C) + fmech(¢,ca §ea Vk) + %|v¢|2} dv
14

Mechanical free energy contribution

fmech(d)u c, gev Vk) = fe(¢7 C, Ee) + fp(¢a C, Vk)

Mechanical dissipation potential

Q(qba c, Q-7 Ak)
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Mechanical Phase-Field Coupling
Balance Equations:
©® Local static mechanical equilibrium:

of \ _
v (856) -0

iev. {L(qﬁ) <V%)} —0

@ Evolution equation of order parameter:
of of

® Balance of mass:
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Mechanical Phase-Field Coupling
Balance Equations:
©® Local static mechanical equilibrium:

af \ | _

K
© Balance of mass:

v @) (v =0

¢ ’ dc a
@ Evolution equation of order parameter:

_g34_ 91 97 |_
B¢ 96 + V. Vo =0
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Mechanical Phase-Field Coupling
Balance Equations:
©® Local static mechanical equilibrium:

V.o =0

® Balance of mass:

c—v.| L) (v%) —0

@ Evolution equation of order parameter:
or or

_ﬁﬁb_% +V. Vo

=0

Constitutive equations (Clausius-Duhem dissipation inequality)

of

Oe°

g
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Mechanical Phase-Field Coupling
Balance Equations:
@ Local static mechanical equilibrium:
V.o =0

® Balance of mass:
¢—V. J =0

@ Evolution equation of order parameter:
;. of af |_
pe—5 5 +V. 5% 3 =0

Constitutive equations (Clausius-Duhem dissipation inequality)

_ v
g = 8ge
1\ )
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Mechanical Phase-Field Coupling
Balance Equations:
@ Local static mechanical equilibrium:

® Balance of mass:

@ Balance of generalized stresses (Gurtin’s balance of microforces):
T +V. § =0

Constitutive equations (Clausius-Duhem dissipation inequality)

B of
g = 8§e
of
1 = L) (Vg})
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Finite Element Implementation
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Finite Element Implementation
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Finite Element Implementation

u*, C*, ¢*
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Finite Element Implementation

Balance Equations
V.og=0 * ok x Variational Formulations
u-,c 7¢ %(1_;,*)
¢c—V.J =0 S(c*)
3(¢%)
™+ V.§£ =0

Finite Element Method
to Discretize Space
Degrees of Freedom
(u'i 5 Cy ¢)
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Finite Element Implementation

Balance Equations
V.og=0 * % Lx Variational Formulations
u-,c 7¢ %(1_;,*)
¢—V.J =0 S(c*)
3(¢%)
™+ V.§£ =0

Finite Element Method
to Discretize Space
Degrees of Freedom

(’U,i, G, ¢)

Euler Implicite Method
to Discretize Time
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Finite Element Implementation

Balance Equations
V.og=0 * % Lx Variational Formulations
u*, ¢, ¢ S(u*)
¢—V.J =0 S(c*)
3(¢%)
™+ V.§£ =0

Finite Element Method
to Discretize Space Y

Residual Vectors

Degrees of Freedom Rau
(ui 5 Cy ¢) Rc
Rg

Euler Implicite Method
to Discretize Time

Formulation of a Phase Field/Diffusion/Mechanical Model 17/56



Finite Element Implementation

Balance Equations
V.og=0 * % Lx Variational Formulations
u, o S(u*)
¢—V.J=0 S(c)
3(¢%)
™+ V.§£ =0

Finite Element Method
to Discretize Space Y

Residual Vectors

Degrees of Freedom Rau
(’U,i, c, ¢) RC
Rg

Euler Implicite Method
to Discretize Time

[Newton — Raphson’s Methodj

[Kfa]  [Khe]  [Kfs)
(Kl == | [K{i]l [Kfa| [Kfs]
[Kfis]  [Kisa]  [Kfss)
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Finite Element Implementation

Balance Equations
V.og=0 * % Lx Variational Formulations
u, o S(u*)
¢—V.J=0 S(c)
3(¢%)
™+ V.§£ =0

Finite Element Method
to Discretize Space Y

Residual Vectors

Degrees of Freedom Rau
(’U,i, c, ¢) RC
Rg

Euler Implicite Method
to Discretize Time

[Newton — Raphson’s Method]

[Kfa]  [Khe]  [Kfs)
(Kl == | [K{i]l [Kfa| [Kfs]
[Kfis]  [Kisa]  [Kfss)
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Phase-Field and "Homogenization"

Total Free energy
f(¢7 V¢7 C, §67 Vk) = fCh((bv C) + ff((p* C7 Ee) + fi”((ﬁa C7 Vk) + %|V¢|2

Two appraoch of of introducing linear and nonlinear mechanical constitutive
equations into the standard phase field approach:

1. Standard model [Khachaturyan, 1983, Gaubert et al., 2008].

@ The material behaviour is described by a unified set of
constitutive equations.

@ Each parameter is usually interpolated between the limit
values known for each phase.

2. Homogenization method [Steinbach and Apel, 2006]

@ One distinct set of constitutive equations is attributed to
each individual phase k at any material point.

Phase-Field and "Homogenization" 20/56



Phase-Field and "Homogenization"
Standard Khachaturyan Model

00000009
0006060669
000006660

e =¢e,+(1-9)gj

C(d,c) =9 Calc) + (1 -9) Cs(c)
Elastic energy f(g°, ¢):

fe(d.c,ef) = %(é—é*) Ci(e—¢)=
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e Phase-Field and "Homogenization"
@ Multiphase Approach
@ Voigt/Taylor Model
@ Reuss/Sachs Model



Multiphase Approach

o phase interface B phase
Vo
Wyl -=-=--—f--=-=--=------ =
J|
: 5
(]
% V=V, qu
5 v V=V
> b
Vi
W e T T

distance

e=xgat(l-x)gs and g=xga+(1-x)gs
fe(¢7 Cvgevvk) = Xfea + (1 - X) feﬂ
For instance:

Xz, t) = 9l 1) o xe)=
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Voigt/Taylor Model

Voigt/Taylor assumptions

=€~ €
:¢Qa+(1—¢)‘lﬁ

«

Q WM

Effective elasticity tensor
g = ¢ga+ (1-9)Cs

Plastic strain and Eigenstrain:
e =C " (0Ca: g5+ (1-9)Cp:gp)

e =C™: (¢Ca b+ (1—¢)Cp: gp)

Phase-Field and "Homogenization" 24/56



Reuss/Sachs Model

Reuss/Sachs assumptions

Effective compliance matrix
§: d"ga +(1—-9¢)Ss

Plastic strain and Eigenstrain:
e*(¢) = der + (1 - d)ej

e’ = pen+ (1 - d)ej

Phase-Field and "Homogenization" 25/56



Phase-Field Model and "Homogenization"
Elastic energy f.(e, ¢):

fe = ofa+1-09)fs
= L) Cile—g)

2 ~

where 1

fa=5(e~¢€a): Catle—ea)

1 * *

fo=5(e—€p): Cp:(e—€p)
Voigt/Taylor model Reuss/Sachs model
C =9¢Ca+(1-9¢)Cs C=(¢Sa+(1-9¢)8s)7"
e =C7":(¢Ca et +(1-0)Cps:gh) e =¢en+(1-9eh
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Phase-Field Model and "Homogenization"

Elastic energy f.(e, ¢):

fe = ofa+1-09)fs
= L) Cile—g)

2 ~
where 1
fa=5(e~¢€a): Catle—ea)
1 * *
fo=5(e—€p): Cp:(e—€p)
Voigt/Taylor model Reuss/Sachs model
C =¢Ca+(1-9)Cs C=(¢8a+(1-0)Ss) "
€ =C':(¢Ca:eh+(1-0)Cps:eh) g =des+(1-d)eh

Phase-Field and "Homogenization" 26/56



Phase-Field Model and "Homogenization"

Evolution equations for order parameter and concentration:

afch 8fu o

Vé+m=—Bp+V.(aVe) - %5~ e

¢ =—V.(~L(@)Vy) = -V. [—W’) (Vagzh " Vﬁ?)]

Identification of parameters:

v =ValW/(3V2)
§ =294/ 20/ W

Phase-Field and "Homogenization" 27/56
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Elastoplastic Phase-Field Coupling
Plastic free energy density f,(¢, Va, Vp):

F(0, Vb, ¢, €% Vi, Vi) = fon(dy )+ fe(d, ¢, €9+ fo(0, Vi, Va)+%|V¢!2
with
fo=0f0(Va)+ (1 — )12 (V)

where 1, g are the set of internal variables of both phases

Dissipation pseudo-potential €2 :
Q= ¢Qa(Aa) + (1 - ¢)Qﬁ(Aﬁ)

Aa, 3 are the set of thermodynamic forces associated with Va, 8-

Classical Von Mises yield function g, s defined by :
9o8 = Zag — Bo,p

Phase-Field and "Homogenization" 29/56
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Coherent Equilibrium
Bitter-Crum assumptions:
1. The interfaces between « and /3 are coherent.

2. The eigenstrains are spherical tensors independent of
concentration.

3. Homogeneous isotropic linear elasticity is considered.

Elastic Energy [Bitter and crum theorem]:

_ E(g")?
fo=z1=a7 2,
where z is the volume fraction of «.
Energy ratio
1 E(e*)?

A:

k(Ay — A2 (1—v)

Phase-Field and "Homogenization"
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Coherent Equilibrium

-3
95 2l . : : : :
" " =
2.0 F = o % 0. :
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a a
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E o o
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o 0,5—01%
0.5 o 0§5=1% E
" m5=5%
O 0§=10%
0.0 . . . .
0.0 0.2 0.4 0.6 0.8 1.0
V4
Phase-Field and "Homogenization"
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Coherent Equilibrium
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Coherent Equilibrium
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Coherent Equilibrium
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Coherent Equilibrium
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Coherent Equilibrium
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Coherent Equilibrium
Eigenstrain is linear function of composition (Vegard’s law)

g =¢e"(ca —cp)l

Elastic Energy:

Energy ratio

Phase-Field and "Homogenization" 35/56



Coherent Equilibrium
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Coherent Equilibrium
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Coherent Eaquilibrium
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Coherent Eaquilibrium
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Coherent Eaquilibrium
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Coherent Eaquilibrium

] ]
0.8y : : e |
1 1 \(\’O
A=0 ! ! (\Q\eQ
0.71 A—0.15 | ! 5 |
A=0525 I
0.6} ' ; 1
I I
0.5} | | |
] ]
I I
0.4l 1 A>1.5 |
: A::0.525
0.3] L : , A=015 7
3 | L A=0
©
O 1 1
Q)% I I
0.2} | | 1
0.2 0.3 0.4 0.5 0.6 0.7 0.8
Co
Phase-Field and "Homogenization" 37/56



Q

o

Q

Plan

Formulation of a Phase Field/Diffusion/Mechanical Model
@ Principle of Phase Field Method

@ Mechanical Phase-Field Coupling

@ Finite Element Implementation

Phase-Field and "Homogenization"
@ Multiphase Approach
@ Voigt/Taylor Model
@ Reuss/Sachs Model
@ Elastoplastic Phase-Field Coupling
@ Coherent Equilibrium

Plasticity and Phase Transformation Kinetics
@ Oxidation of zirconium
@ Growth of a Misfitting Spherical Precipitate

Conclusions and Future Work



Plan

e Plasticity and Phase Transformation Kinetics
@ Oxidation of zirconium



Initial/Boundary Conditions

Schematic of the misfitting planar oxide layer («) growing at the surface of a pure
zirconium slab (3).

The interface/boundary conditions :

c(Ve,y = 0,Vz,t) = ¢, = 0.68
c(Va,y = h,Vz,t) = coo = 0.22

Choosing the Zr phase as the stress free reference state, the eigenstrain, in
the phase «, is a spherical tensor independent of concentration:

€o =0mo,1  and  g5=0

where 1 the unit second order tensor.
Plasticity and Phase Transformation Kinetics 40/56



Growth Kinetics

02

00 02 0.4 0.6 0s 10 0 100 200 300 100 500 600
& (pm) time (h)

The growth kinetics of the oxide layer

with K = 7.5.1071° m.s~ /2 and Kzp= 7.10710 m.s~1/2
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Evolution vs. time of the concentration field in oxygen during the growth of an
oxide with an interface initially destabilized by a sine (left) and of a sinusoidal
oxide layer (right).
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Effect of the Misfit Generated Stress

— chemical
G0, =£2%

G0 =+4%

e iy, =%6%

by =T

260 460 660 860
time (h)
Growth kinetics of the oxide layer
for different dilatation misfits in the

oxide layer

Plasticity and Phase Transformation Kinetics

Interfacial equilibrium concentration
[Johnson and Alexander, 1986]

cg’t =aq + Ac
cignt =ap + Ac
with

gcoh - Afcl + Ry

A= i ap — an)

where

Ecoh = (€a —€p) 1 @5

Afe = fea - feB
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Effect of the Misfit Generated Stress
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Plasticity and Phase Transformation Kinetics

chematic illustration of the composition
profiles in both matrix and oxide layer
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Effect of the Misfit Generated Stress
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Effect of the Oxide Elasticity Moduli

0.9
— chemical
ogl| ™ Fan, =T0GP
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0.0 =
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Growth kinetics of the oxide layer for different oxide Young’s moduli Ez;0, . Inset
shows the dependency of the corresponding kinetic constants K
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Effect of Plastic Accommodation Processes

0.8

e—e chemical
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The growth kinetics of ZrO oxide layer in the infinite unstressed Zr matrix assuming a
chemical, elastic and ideal plastic behaviour for oxide layer.
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Plan

e Plasticity and Phase Transformation Kinetics

@ Growth of a Misfitting Spherical Precipitate



Growth of an Elastic Particle in an Elastioplastic Matrix

The « precipitate of radius r;,: is embedded in the 3 matrix with an infinite radius.

Boundary conditions :

£.n =0, J.n on all boundaries
og(r=R,0)=0 0<6<6 : free surface condition

ug(r,0 =0) =0 0<r<R

ug(r,0 =6p) =0 0<r<R : symmetric boundary condition

Plasticity and Phase Transformation Kinetics 48/56



Growth of an elastic particle in an elastioplastic matrix
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Growth of an elastic particle in an elastioplastic matrix
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Growth of an elastic particle in an elastioplastic matrix
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Growth of an Elastic Particle in an Elastioplastic Matrix

Interfacial equilibrium concentration
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Time evolution of the concentration profiles n “
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Growth of an elastic particle in an elastioplastic matrix
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Growth kinetics of a misfitting spherical precipitate in an infinite matrix
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Formulation of a Phase Field/Diffusion/Mechanical Model
@ Principle of Phase Field Method

@ Mechanical Phase-Field Coupling

@ Finite Element Implementation

Phase-Field and "Homogenization"
@ Multiphase Approach
@ Voigt/Taylor Model
@ Reuss/Sachs Model
@ Elastoplastic Phase-Field Coupling
@ Coherent Equilibrium

Plasticity and Phase Transformation Kinetics
@ Oxidation of zirconium
@ Growth of a Misfitting Spherical Precipitate
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Main results

| A general framework has been proposed to combine standard phase
field approaches with a different complex linear or non-linear material
behaviour for each phase.

The proposed framework offers a number of advantages:

@ Balance and constitutive equations are clearly separated in the
formulation, which allows the application of any arbitrary form for the
free energy functional.

© The formulation is shown to be well-suited for a finite element
formulation of the initial boundary value problems on finite size
specimens with arbitrary geometries and for very general non-periodic
or periodic boundary conditions.

@ The approach makes possible to mix different types of constitutive
equations for each phase.

@ The formulation allows the use of any arbitrary mixture rules taken from
well-known homogenization theory, in the interface region.

Conclusions and Future Work 53/56



Main results

Il Programming and implementation of finite element constitutive equations
with different homogenization schemes in finite element code ZeBuLoN
where specific classes have been defined following the philosophy of
object oriented programming.

Modelling and simulation of some elementary initial boundary value
problems in both pure diffusion and coupled diffusion-elastoplasticity on
finite size specimens.

The different results demonstrate that the choice of such an interpolation
scheme can have serious consequences on the predicted coherent phase
diagram:

@ Reuss scheme is unacceptable for coupling mechanics and phase
transformation

@ Voigt/Taylor and Khachaturyan Models are equivalent
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Future Work

Short-term prospects

@ Effect of coherent elastic strain on shape instabilities during
growth.

@ Use of other general homogenization schemes, like the
Hashin—Shtrikman procedure or the self-consistent method.

@ Anisotropic effects through the interface energies, the elastic
coefficients, or the material parameters.

@ Phase field and crystal plasticity
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Future Work

Long-term prospects

@ Inheritance of plastic deformation during migration of phase
boundaries.

@ Mesh sensitivity and adaptive mesh

[Abrivard, 2009]
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Evolution equation for order parameter:

_ - Ofo _0f _
VE+r = Bo+ alg 96 00
. . afo 1 c.ag. (‘78§C, e
At equilibrium (¢ = 0) and in the case of homogeneous elasticity (=~ 6(;5 =0),
the phase field equation can be written as follows:
Po  Ofo  OF  _
dz? Opeq  Opeq
Ppeq  Ofo  0e°
— ——=:C:e" =
VA2 T Beq  Opeq < F 0
Khachaturyan voigt/Taylor Sachs/Reuss
0g" _ €n — €5 = cste 0g" _ €n — €5 = cste g" _ 0
99 > 0 99 > 0 96
g = ga = gg e _ _e age —
Co:gh = Coigy  F=7% 9 "
57/56
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Evolution equation for order parameter:

_ ; 0o _0F _
VE+n = B + alg 96 96—
: dfo 1 . Oe®
= — —_——_— . = N — = C N ¢ = 0
Be + alA¢ 962509 £ " as ¢
At equilibrium (¢ = 0) and in the case of homogeneous elasticity ( 8¢ =0),
the phase field equation can be written as follows:
Poeg  0f  OF  _
dx? a¢eq OOeq
d2¢eq dfo 0 . e _
CR?  Bpe G0 2€ T 0
Khachaturyan voigt/Taylor Sachs/Reuss
0" _ €n — €3 = cste 0" _ €n — €3 = cste " _ 0
o9~ *P o9~ P 06
g = T = ags e _ _e Og° _
Caigh = Coigy 7% o6 "
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Evolution equation for order parameter:

VErT = —ﬁ¢+aA¢—%—J;2—%:o
= ,5¢+QA¢,%{§,166.

At equilibrium (¢ = 0) and in the case of homogeneous elasticity (%% =0),
the phase field equation can be written as follows:

0
R N) ) .

d$2 B 8¢eqﬂ@eq

d2¢eq
— 0
dx?
Khachaturyan voigt/Taylor Sachs/Reuss
S €n — €5 = cste A €n — €5 = cste dg” _ 0
o9 = o9 = P 9
g = ga = gﬁ — Ee — €E — age =0
Coigh = Coigs o 2
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Element residual vector

Element residual vector:
Ra
RE
RS

RS, RE(c, ¢) and Rg(¢>) are respectively the element residuals for the variational
formulation of classical mechanics, diffusion and phase field, defined as follow:

{R(u,c,0)}

(R%)4 :./ve ( [Be] Loj + [Ne]l] f]) dv + [Ne] tjds

(Re)i = [ (NeNges (5 0y) vt [ Nejas

Re)i = [ (Nen(e) = (B ) do+ [ Necas

The global residual vector can be obtained by assembling the element residuals for all
finite elements using the matrix assembly [A®]:

N

=D (A7 {R(¢)} = {0}

e=1
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Variational formulations

Variational formulations:

S(u*) = / -0 gradu*dV—i—/ f.u*dV—i—/ tu*dS=0
% Vv oV

J(c*) = / ec* dV—/ J. V& dV+/ jcrdS =0
% % )%

3(6") = [ norav— | €.verd " dS =
(™) /vmb dy /V£V¢ V+ 8VC¢ 0
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Stiffness matrix
Stiffness matrix

[Kfa] 0] K]

K= | O K Ko | e 0= [ . ]
[Kfis]  [Kis]  [Kfss] ’
(K = a(ai?i = /v {8856}%. [B],,; dvV
(Kfs)i = ag;?i = —/W {gﬁf‘i]lk [B°],; avV
(Kis1)iy = (‘3;1;5?1 = /V [N,y - {g’;]m dy
(Ka2)ij = 6(6}?1 = Alt/v N§.N¢ dv—/w (B, - [g;’ehj %
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Stiffness matrix
Stiffness matrix

(Kl [0 [Khsl
(K] = 0] [Kinl [Kfil et [0] = [

[Kfis] (Kl Kl

O(RS)i oJ
Ky = 2~ = [, [22] o
t23/) 6¢g Ve k 6¢ K
e . . a(Rﬁe’,)z " 87r ,
(Kis)ij = ace = . N; '(805 )j AV
O(RS) o / {ag ]
K¢ i o= = = Nze Ay — Bei ) dy
( t33) J 8¢j Ve (8¢>e )j e [ ] k 7a¢)e .
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Principle of Virtual Power

Two virtual fields: order parameter ¢* and displacement «*
@ Virtual power of internal generalized forces :

PO, ¢, V) = —/ (¢:Vu* +£.V¢" —n¢")dv
%

@ Virtual power of external forces :
1. Virtual power of long range volume forces :
PE(u*, ¢*,V) = /(j u+y9t + . Vo) dV
%

volumic density of force f.

2. Virtual power of generalized contact forces:

P(C)(y*,qﬁ*,V):/ (tu* +(o")dS

oV

where t is a surface density of cohesion forces and ¢ is a
surface density of microtraction.
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Principle of Virtual Power

Principle of virtual power P.P.V. :
Vu ", V¢" VD CV
PO w*,¢", D)+ P w”, 6", D)+ P (", 6", D) + P (u", ", D) = 0

Sw' o) = [(Verfuws [ (comtiuas

+ /\}(Vg + ) dw/w(—g.@mqs ds = 0

Equations of the phase-field/diffusion/mechanical model:

Local static equilibrium: Vag+f=0
on =t

Balance of generalized stresses: VE+T=0
§€n=¢

Balance of mass: V. +c=0
Jn=j

where J is the diffusion flux
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Elastoplastic/Phase-Field/Diffusion model

State laws [Ammar et al., 2009] Complementary laws
Ap = 8% by, = —5—2
£0) = 5o nas =+ O

Ay, are the thermodynamic forces associated with the set of internal
variables «;..

w is the diffusion potential.
Q is the dissipation potential.
e? is the plastic strain.

mqis IS the chemical force associated with the dissipative processes.
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