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Abstract. Strain gradient models and generalized continua are increasingly used
to introduce characteristic lengths in the mechanical behavior of materials with
microstructure. On the other hand, phase-field models have proved to be efficient
tools to simulate microstructure evolution due to thermodynamical processes in the
presence of mechanical deformation. It is shown that both methods have strong
connections from the point of view of thermomechanical field theory. A general
formulation of thermomechanics with additional degrees of freedom is presented
that encompasses both applications as special cases. It is based on the introduction
of additional power of internal forces introducing generalized stresses. The cur-
rent knowledge in the formulation of physically non-linear constitutive equations is
used to develop strongly coupled elastoviscoplastic material models involving phase
transformation and moving boundaries.

1 Introduction

There are strong links between generalized continuum mechanics and phase field
models which are striving in modern field theories of materials. Mindlin’s and
Casal’s second gradient model of mechanics and the Cahn-Hilliard diffusion theory
were developed almost simultaneously. More generally, the necessity of introducing
additional degrees of freedom in continuum models arose in the 1960s in order to
account for microstructure effects on the overall material’s response. However, gen-
eralized continuum mechanics, with paradigms like Eringen’s micromorphic model
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and Aifantis strain gradient plasticity, developed along an independent track from
phase-field approach embodied by Khachaturyan’s views, for instance.

The links have been seen recently within the context of plasticity and damage
mechanics. The computational mechanics community aimed at introducing the evo-
lution of microstructures into their simulations [2, 38] whereas physicists started
introducing plasticity into the thermodynamical setting [19]. Cooperation between
these communities becomes necessary when tackling damage mechanics and crack
propagation simulation [6, 32]. First attempts to present a general constitutive
framework encompassing classical enhanced mechanical and thermodynamical
models have been proposed recently [7, 14, 30]. Such an approach is presented
in this chapter and extended to sophisticated descriptions of interactions between
viscoplasticity and phase transformations.

The micromorphic model originates from Eringen’s introduction of microdefor-
mation tensor at each material point that accounts for the changes of a triad of mi-
crostructure vectors. In the present chapter, the micromorphic approach denotes an
extension of this theory to other variables than total deformation, namely plastic
strain, hardening variables, and even temperature and concentration. The gist of
the micromorphic model is to associate a microstructure quantity (e. g. microde-
formation) to an overall quantity (e. g. macroscopic deformation). The deviation of
the microvariable from the macrovariable and the gradient of the microvariable are
sources of stored energy and dissipation. They are controlled by generalized stresses
which contribute to the power of internal forces.

On the other hand, the phase-field approach has proved to be an efficient method
to model the motion of interfaces and growth of precipitates based on a sound ther-
modynamical formulation including non convex free energy potentials [13]. The
effect of microelasticity on the morphological aspects and kinetics of phase trans-
formation is classically studied but the occurrence of plasticity is recent [19, 20, 38].
Beyond plasticity, damage and crack propagation are the subject of both generalized
continuum and phase-field approaches [6, 17, 31, 32, 39]. Phase-field simulations
usually rely on finite differences or fast Fourier methods. More recently, the finite
element method was also used in order to tackle more general boundary conditions
[2, 32, 36].

The objective of the present chapter is to formulate a thermomechanical theory
of continua with additional degrees of freedom. It is shown in a first part that the
theory encompasses available generalized continuum theories and phase-field mod-
els provided that well-suited free energy and dissipation potentials are selected. The
current strain gradient plasticity models are then extended to account simultane-
ously for plastic strain gradient and plastic strain rate gradient in order to address
viscoplastic instabilities occurring in metal plasticity like dynamic strain aging. The
second part of the work exposes how the well-known elastoviscoplastic constitutive
framework can be incorporated into the available phase-field approach in order to
investigate the coupling between viscoplasticity and phase transformation. An orig-
inal approach is proposed that resorts to standard homogenization techniques used
in the mechanics of heterogeneous materials.
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Intrinsic notations are used throughout this work. In particular, scalars, vectors,

tensors of second, third and fourth ranks are denoted by a, a,
2
a,

3
a,

4
a, respectively.

Contractions are written as:

a · b = aibi ,
2
a :

2
b = ai jbi j ,

3
a
...

3
b = ai jkbi jk (1)

using the Einstein summation rule for repeated indices. The gradient operator ∇ is
introduced as

u ⊗ ∇ = ui, j ei ⊗ e j, with ui, j =
∂ui

∂x j
, (2)

where (ei)i=1,2,3 is a Cartesian orthonormal basis.
For the sake of brevity, the analysis is limited to the small deformation frame-

work throughout this work. Also most situations are considered under isothermal
conditions.

2 Thermomechanics with Additional Degrees of Freedom

2.1 General Setting

The displacement variables of mechanics can be complemented by additional de-
grees of freedom (DOF), φ, that can be scalars as well as tensor variables of given
rank:

DOF = {u, φ} . (3)

A first gradient theory is built on the basis of this set of degrees of freedom:

S TRAIN = {2ε, φ, ∇φ} . (4)

The strain tensor,
2
ε, is the symmetric part of the gradient of the displacement field.

The main assumption of the proposed theory is that the gradient of the additional
degrees of freedom contribute to the work of internal forces in the energy equation,
in contrast to internal variables and concentration in diffusion theory. Depending
on the invariance properties of the variable φ, it can itself contribute to the work
of internal forces together with its gradient. It is not the case for the displacement
itself which is not an objective vector. The virtual power of internal forces is then
extended to the virtual power done by the additional variable and its first gradient:

P(i)(u̇�, φ̇�) = −
∫
D

p(i)(u̇�, φ̇�) dV ,

p(i)(u̇�, φ̇�) =
2
σ : ∇u̇� + aφ̇� + b · ∇φ̇� , (5)
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where D is a subdomain of the current configuration Ω of the body. Stars denote

virtual fields. The Cauchy stress tensor is
2
σ and a and b are generalized stresses

associated with the additional DOF and its first gradient, respectively. Similarly, the
power of contact forces must be extended as follows:

P(c)(u̇�, φ̇�) =
∫
D

p(c)(u̇�, φ̇�) dV , p(c)(u̇�, φ̇�) = t · u̇� + ac φ̇� , (6)

where t is the traction vector and ac a generalized traction. In general, the power of
forces acting at a distance must also be extended in the form:

P(e)(u̇�, φ̇�) =
∫
D

p(e)(u̇�, φ̇�) dV, p(e)(u̇�, φ̇�) = ρf · u̇� + aeφ̇� + be · ∇φ̇�, (7)

where ρf accounts for given simple body forces and ae for generalized volume
forces. The power of inertial forces also requires, for the sake of generality, the in-
troduction of an inertia I associated with the acceleration of the additional degrees
of freedom:

P(a)(u̇�, φ̇�) =
∫
D

p(a)(u̇�, φ̇�) dV , p(a)(u̇�, φ̇�) = −ρü · u̇� − Iφ̈ φ̇� . (8)

Following [21], given body couples and double forces working with the gradient of
the velocity field, could also be introduced in the theory. The generalized principle
of virtual power with respect to the velocity and additional DOF, is formulated as

P(i)(u̇�, φ̇�) + P(e)(u̇�, φ̇�) + P(c)(u̇�, φ̇�) + P(a)(u̇�, φ̇�) = 0 , ∀D ⊂ Ω,∀u̇�, φ̇. (9)

The method of virtual power according to [27] is used then to derive the standard
local balance of momentum equation:

∇· 2
σ + ρ f = ρ ü , ∀x ∈ Ω (10)

and the generalized balance of micromorphic momentum equation:

∇· (b − be) − a + ae = Iφ̈ , ∀x ∈ Ω . (11)

The method also delivers the associated boundary conditions for the simple and
generalized tractions:

t =
2
σ · n , ac = (b − be) · n , ∀x ∈ ∂D . (12)

The local balance of energy is also enhanced by the generalized power already in-
cluded in the power of internal forces (5):

ρε̇ = p(i) − ∇· q + ρr , (13)
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where ε is the specific internal energy, q the heat flux vector and r denotes external
heat sources. The entropy principle takes the usual local form:

−ρ(ψ̇ + ηṪ ) + p(i) − q
T
· ∇T ≥ 0 , (14)

where it is assumed that the entropy production vector is still equal to the heat vector
divided by temperature, as in classical thermomechanics. Again, the enhancement
of the theory goes through the enriched power density of internal forces (5). The
entropy principle is exploited according to classical continuum thermodynamics to
derive the state laws. At this stage it is necessary to be more specific on the depen-

dence of the state functionsψ, η,
2
σ, a, b on state variables and to distinguish between

dissipative and non-dissipative mechanisms. The introduction of dissipative mech-
anisms may require an increase in the number of state variables. These different
situations are considered in the following subsections.

2.2 Micromorphic Model as a Special Case

The micromorphic model as initially proposed by Eringen [12] and Mindlin [33]
amounts to introducing a generally non compatible microdeformation field:

φ ≡ 2
χ ,

where
2
χ is a generally non-symmetric second order tensor defined at each material

point. When the microdeformation reduces to its skew symmetric part, the Cosserat
model is retrieved [10, 16]. The microdeformation is to be compared to the defor-
mation gradient:

2
e = u ⊗ ∇ − 2

χ . (15)

If the internal constraint
2
e ≡ 0 is enforced, the microdeformation coincides with

the deformation and the micromorphic model reduces to Mindlin’s second gradient
theory. The free energy density depends of the following state variables:

S T AT E = {2ε, 2
e,

3
K :=

2
χ ⊗ ∇, T, α} ,

where α denotes the set of internal variables required to represent dissipative me-
chanical phenomena. The Clausius-Duhem inequality (14) becomes, in the isother-
mal case,

(
2
σ− ρ∂ψ

∂
2
ε

) :
2
ε̇ + (

2
a − ρ∂ψ

∂
2
e

) :
2
ė + (

3
b − ρ ∂ψ

∂
3
K

)
...

3

K̇− (ρη + ρ
∂ψ

∂T
)Ṫ − ρ∂ψ

∂T
α̇ ≥ 0 , (16)
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where
2
a was taken as the stress conjugate to the relative deformation rate

2
ė in the

power of internal forces, which corresponds to an alternative form for (5). The state
laws for micromorphic media are obtained by assuming that the first four contribu-
tion are non-dissipative:

2
σ = ρ

∂ψ

∂
2
ε
,

2
a = ρ

∂ψ

∂
2
e
,

3
b = ρ

∂ψ

∂
3
K
, η = −∂ψ

∂T
. (17)

Elastoviscoplastic micromorphic media are then obtained by a specific choice of the
internal variables α and their evolution rules [16].

2.3 Phase-Field Model as a Special Case

Enhancing the mechanical power in the energy balance is plausible in the presence
of microstructure induced mechanical phenomena, as proposed by Eringen. How-
ever, this is also possible in other contexts, namely when the DOF φ has a more
general meaning of an order parameter. Fried and Gurtin [18, 22] suggested to con-
sider the following reduced state space:

S T AT E = {2ε, φ, ∇φ, T, α} (18)

and the following state laws

2
σ = ρ

∂ψ

∂
2
ε
, b = ρ

∂ψ

∂∇φ , η = −∂ψ
∂T

, (19)

so that, in the isothermal case, the dissipation rate reduces to

avφ̇ + Xα̇ ≥ 0 with av = a − ρ∂ψ
∂φ

, X = −ρ∂ψ
∂α

. (20)

The choice of a convex potential Ω(av, X) providing the evolution laws

φ̇ =
∂Ω

∂av
, α̇ =

∂Ω

∂X
(21)

ensures the positivity of the dissipation rate.
As an illustration, let us consider a quadratic contribution of av to the dissipation

potential. We are led to the following relationships

φ̇ =
1
β

av =
1
β

(a − ρ∂ψ
∂φ

) , (22)

where β is a material parameter. The latter equation can be combined with the bal-
ance law (11), in the absence of volume or inertial forces, and the state law (19) to
derive
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β φ̇ = ∇·
(
ρ
∂ψ

∂∇φ
)
− ρ∂ψ

∂φ
, (23)

which corresponds to a general Ginzburg-Landau equation.
The authors in [38] have combined the micromorphic approach and the

Cahn-Hilliard approach to diffusion in order to derive an alternative equation to
Cahn-Hilliard.

3 Constitutive Framework for Gradient and Micromorphic
Viscoplasticity

We now exploit the established general structure to propose a constitutive frame-
work for elastoviscoplastic materials exhibiting plastic strain gradient. The attention
is focused on an isotropic elastoviscoplastic medium characterized by the cumulated
plastic strain, p. The proposed formulation encompasses Aifantis-like strain gradi-
ent plasticity models and introduces additional strain rate gradient effects. The total

strain is split into its elastic and plastic parts:
2
ε =

2
εe +

2
εp. In this context, the addi-

tional DOF φ has the meaning of a microplastic strain [15] to be compared with p
itself.

Two variants of the constitutive framework are considered which handle in a
slightly different way the dissipative contribution due to the generalized stresses.

3.1 Introduction of Viscous Generalized Stresses

The free energy density is assumed to depend on the following state variables:

S T AT E = {2εe, e := φ − p, p, K := ∇φ} . (24)

The isothermal Clausius-Duhem inequality take the form:

(
2
σ − ρ ∂ψ

∂
2
εe

) :
2
ε̇e + (a − ρ∂ψ

∂e
) ė + (b − ρ ∂ψ

∂K
) · K̇ + 2

σ :
2
ε̇p + aṗ − ρ∂ψ

∂T
α̇ ≥ 0 . (25)

The following state laws are adopted:

2
σ = ρ

∂ψ

∂
2
εe
, R = ρ

∂ψ

∂p
. (26)

To ensure the positivity of the dissipation rate associated with the generalized stress
a and b, we adopt the viscoelastic constitutive equations

a = ρ
∂ψ

∂e
+ βė , b = ρ

∂ψ

∂K
+ κK̇ , (27)
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where β and κ are generalized viscosity coefficients. This viscoelastic formulation
amounts to splitting the generalized stresses a and b into elastic (reversible) and

viscous parts. Regarding viscoplastic deformation, a viscoplastic potential Ω(
2
σ, a−

R) is chosen such that
2
ε̇p =

∂Ω

∂
2
σ
, ṗ =

∂Ω

∂a − R
. (28)

In order to evidence the kind of gradient elastoviscoplastic models we aim at, we
illustrate the case of a quadratic free energy potential:

ρψ =
1
2

2
εe :

4
C :

2
εe + R0 p +

1
2

Hp2 +
1
2

Hφe2 +
1
2

AK ·K , (29)

2
σ =

4
C :

2
εe, R = R0 + Hp , a = Hφe + βė , b = AK + κK̇ . (30)

The viscoplastic potential is based on the yield function that introduces the equiva-
lent stress measure σeq and a threshold

Ω(
2
σ, a − R) =

K
n + 1

〈
σeq + a − R

K

〉n+1

,
2
ε̇p = ṗ

∂σeq

∂
2
σ
, ṗ =

〈
σeq + a − R

K

〉n

, (31)

where 〈·〉 denotes the positive part of the quantity in brackets, and K and n are
usual viscosity parameters. The decomposition (27) and the generalized balance
(11) become

a = Hφ(φ − p) + β(φ̇ − ṗ) = ∇· (AK + κK̇) . (32)

We finally obtain the following linear partial differential equation, under the condi-
tion of plastic loading, in the absence of volume and inertial forces:

Hφφ − AΔφ + βφ̇ − κΔφ̇ = Hφp + κ ṗ , (33)

where Δ is the Laplace operator. When the viscous parts are dropped in (27), the
Helmholtz type equation used in strain gradient plasticity and damage [11, 14, 35]
is retrieved. It is classically used for the regularization of strain localization phe-
nomena. The rate dependent part in the previous equation is expected to be useful
in the simulation of strain rate localization phenomena which occur for instance in
strain aging materials [29].

Under plastic loading, the equivalent stress can then be decomposed into the
following contributions:

σeq = R − a + K ṗ1/n = R0 + Hp − AΔφ − κΔφ̇ + K ṗ1/n . (34)

If κ = 0, the micromorphic model is retrieved. If, furthermore, the constraint φ ≡ p
is enforced, Aifantis well-known strain gradient plasticity model is recovered.
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3.2 Decomposition of the Generalized Strain Measures

It is proposed now to consider the decomposition of the additional DOF and its
gradient into elastic and plastic parts:

φ = φe + φp , K = Ke +Kp . (35)

The decomposition of φ itself is allowed only if it is an objective quantity. This

would not apply for instance for φ ≡ 2
R, the Cosserat microrotation. But it is al-

lowed for a strain variable [16]. Such generalized kinematic decompositions were
proposed in [16] for strain gradient, Cosserat and micromorphic media, also at fi-
nite deformation. It is generalized here for more general DOFs, possibly related to
physically coupled phenomena.

The selected state variables then are

S T AT E = {2εe, φe, Ke, p} , (36)

which leads to the following Clausius-Duhem inequality:

(
2
σ − ρ ∂ψ

∂
2
εe

) :
2
ε̇e + (a − ρ ∂ψ

∂φe
)φ̇e + (b − ρ ∂ψ

∂Ke
) · K̇e

+
2
σ :

2
ε̇p + aφ̇p + b · K̇p − Rṗ ≥ 0 . (37)

The retained state laws are

2
σ = ρ

∂ψ

∂
2
εe
, a = ρ

∂ψ

∂φe
, b = ρ

∂ψ

∂Ke
. (38)

The residual dissipation then is

2
σ :

2
ε̇p + aφ̇p + b · K̇p − Rṗ ≥ 0 . (39)

A simple choice of dissipation potential is

Ω(
2
σ,R, a) =

K
n + 1

〈
σeq + a − R

K

〉n+1

+
Ka

ma + 1

( |a|
Ka

)ma+1

+
Kb

mb + 1

(
beq

Kb

)mb+1

, (40)

where beq is a norm of b and from which the evolution rules are derived

2
ε̇p = ṗ

∂σeq

∂
2
σ

, ṗ = −∂Ω
∂R
=

〈
σeq + a − R

K

〉n

, (41)

φ̇p =
∂Ω

∂a
= ṗ +

( |a|
Ka

)ma

sign a , K̇p
=
∂Ω

∂b
=

(
beq

Kb

)mb ∂beq

∂b
. (42)
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The time variation of the additional DOF therefore deviates from the cumulated
plastic strain rate by a viscous term characterized by the material parameters Ka and
ma. The residual dissipation rate becomes

(σeq − R + a) ṗ +
|a|ma+1

Kma
a
+

(
beq

Kb

)mb ∂beq

∂b
· b ≥ 0 , (43)

which is indeed always positive.
Let us illustrate the type of partial differential equation provided by such a model.

For that purpose, a simple quadratic free energy potential is chosen:

ρψ =
1
2

2
εe :

4
C :

2
εe + R0 p +

1
2

Hp2 +
1
2

Hφφ
e2 +

1
2

AKe ·Ke . (44)

As a result, the corresponding state laws can be combined with the extra-balance
equation (11):

a = Hφφ
e = ∇·b = ∇· (AKe) , (45)

which leads to the following partial differential equation, under the condition of
material homogeneity:

Hφ(φ − φp) = AΔφ − A∇·Kp . (46)

If Ka = ∞ (infinite viscosity), Eq. (42) shows that φp coincides with p. If, further-
more, Kb = ∞, the plastic part of K vanishes. The Eq. (45) then reduces to the
Helmholtz-type equation (33) where β and κ are set to zero. An alternative expres-
sion of (45) can be worked out by taking the viscous laws into account

a = Ka(φ̇p − ṗ) = ∇· b = ∇·KbK̇
p
, (47)

which leads to the following partial differential equation:

Ka(φ̇p − ṗ) = Kb∇· K̇p
. (48)

When the elastic contributions φe and Ke are neglected, the previous equation re-
duces to

Ka(φ̇ − ṗ) = KbΔφ̇ , (49)

which is identical to (33) after taking A = Hφ = 0.

4 Phase-Field Models for Elastoviscoplastic Materials

In this section, the additional degree of freedom is a phase-field variable. We show
how the constitutive framework for elastoviscoplastic materials can be embedded
in the existing phase-field approach which combines diffusion and phase field equa-
tions to model the motion of boundaries between phases. The migration of interfaces
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and growth of precipitates are strongly influenced by the mechanical behavior of the
phases.

One observes in current literature a strong endeavor to develop microstructure
evolution simulation schemes coupled with complex mechanical material behav-
ior ranging from heterogeneous elasticity to general elastoviscoplasticity. The main
difficulty of such a task lies in the tight coupling between the complex inter-
face evolutions and the fields, common to many moving boundary problems. The
phase-field approach has emerged as a powerful method for easily tackling the mor-
phological evolutions involved in phase transformations. Phase-field models have
incorporated elasticity quite early [40] and have succeeded in predicting some com-
plex microstructure evolutions driven by the interplay of diffusion and elasticity. It
is only very recently that some phase-field models have been enriched with nonlin-
ear mechanical behavior, extending the range of applications and materials which
can be handled by the phase-field approach [3, 19, 20, 38].

There are essentially two ways of introducing linear and nonlinear mechanical
constitutive equations into the standard phase-field approach:

1. The material behavior is described by a unified set of constitutive equations in-
cluding material parameters that explicitly depend on the concentration or the
phase variable. Each parameter is usually interpolated between the limit values
known for each phase. This is the formulation adopted in the finite element sim-
ulations of Cahn-Hilliard like equations coupled with viscoplasticity in [38, 39]
for tin-lead solders. The same methodology is used in [19, 20] to simulate the
role of viscoplasticity on rafting of γ’ precipitates in single crystal nickel base
superalloys under load.

2. One distinct set of constitutive equations is attributed to each individual phase
k at any material point. Each phase at a material point then possesses its own

stress/strain tensor
2
σk,

2
εk. The overall strain and stress quantities

2
σ,

2
ε at this ma-

terial point must then be averaged or interpolated from the values attributed to
each phase. This is particularly important for points inside the smooth interface
zone. At this stage, several mixture rules are available to perform this averaging
or interpolation. This approach makes possible to mix different types of constitu-
tive equations for each phase, like hyperelastic nonlinear behavior for one phase
and conventional elastic-plastic model with internal variables for the other one.
No correspondence of material parameters is needed between the phase behavior
laws. This is the approach proposed in [37] for incorporating elasticity in a multi-
phase-field model. For that purpose, the authors resort to a well-known homoge-
neous stress hypothesis taken from homogenization theory in the mechanics of
heterogeneous materials [8]. In the present work, we propose to generalize this
procedure to nonlinear material behavior and to other mixture rules also taken
from homogenization theory.

It must be emphasized that the latter procedure is very similar to what has already
been proposed for handling diffusion in phase-field models by [26]. Two concen-
tration fields cα and cβ are indeed introduced, and the real concentration field is
obtained by a mixture rule together with an internal constraint on the diffusion
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potentials. Introducing two concentration fields gives an additional degree of free-
dom for controlling the energy of the interface with respect to its thickness. If this
possibility is not obvious when mechanics is introduced, adding a degree of freedom
for describing the stresses/strains within a diffuse interface could be valuable to get
rid of some spurious effects due to unrealistic interface thickness.

4.1 Coupling with Diffusion

In the context of mass diffusion and phase-field evolution, the local form of the
energy principle is

ė =
2
σ :

2
ε̇ + aφ̇ + b · ∇φ̇ . (50)

The total strain is partitioned into the elastic strain
2
εe, the eigenstrain

2
ε� due to

phase transformation and the plastic strain
2
εp:

2
ε =

2
εe +

2
ε� +

2
εp . (51)

According to the thermodynamics of irreversible processes, the second law states
that the variation of entropy is always larger than or equal to the rate of entropy flux
induced by diffusion:

T η̇ − ∇ · (μJ) � 0 , (52)

where J is the diffusion flux and μ is the chemical potential. The conservation law
for mass diffusion is then

ċ = −∇ · J . (53)

Accordingly, the fundamental inequality containing first and second principles in
the isothermal case is written as

−ρψ̇ + 2
σ :

2
ε̇ + aφ̇ + b · ∇φ̇ + μċ − J · ∇μ � 0 . (54)

Assuming that the free energy density depends on the order parameter φ and its

gradient, the concentration c, the elastic strain
2
εe and the set of internal variables Vk

associated to material hardening1:

S T AT E = {φ, ∇φ, c,
2
εe, Vk} .

The Clausius-Duhem inequality now becomes:

(
a − ρ∂ψ

∂φ

)
φ̇ +

(
b − ρ ∂ψ

∂∇φ
)
· ∇φ̇ +

(
μ − ρ∂ψ

∂c

)
ċ

+

⎛⎜⎜⎜⎜⎜⎝ 2
σ − ∂ψ

∂
2
εe

⎞⎟⎟⎟⎟⎟⎠ :
2
ε̇e − J.∇μ + 2

σ :
2
ε̇p − ρ ∂ψ

∂Vk
V̇k � 0 . (55)

1 In this section, the notation for internal variables is changed to (Vk)k∈{α,β} since α is now an
index denoting one phase.



Micromorphic and Phase-Field Elastoviscoplasticity 81

The following reversible mechanisms and corresponding state laws are chosen:

b = ρ
∂ψ

∂∇φ , μ = ρ
∂ψ

∂c
,

2
σ = ρ

∂ψ

∂
2
εe
, Ak := ρ

∂ψ

∂Vk
. (56)

The residual dissipation then is
(
a − ρ∂ψ

∂φ

)
φ̇ − J · ∇μ + 2

σ :
2
ε̇p − AkV̇k � 0 . (57)

Three contributions appear in the above residual dissipation rate. The first is the
phase-field dissipation, associated with configuration changes of atoms and related
to the evolution of the order parameter:

Dφ = avφ̇ with av = a − ρ∂ψ
∂φ

, (58)

where av is the chemical force associated with the dissipative processes [22]. The
second contribution is the chemical dissipation due to diffusion, associated with
mass transport. The last contribution is the mechanical dissipation, as discussed
earlier.

An efficient way of defining the complementary laws related to the dissipative
processes and ensuring the positivity of the dissipation for any thermodynamic pro-

cess is to assume the existence of a dissipation potential Ω(av,∇μ, 2
σ, Ak), which is

a convex function of its arguments:

φ̇ =
∂Ω

∂av
, J = − ∂Ω

∂∇μ , V̇k = − ∂Ω
∂Ak

,
2
ε̇p =

∂Ω

∂
2
σ
. (59)

These equations represent the evolution law for the order parameter, the diffusion
flux as well as the evolution laws for the internal variables.

4.2 Partition of Free Energy and Dissipation Potential

The total free energy is postulated to have the form of a Ginzburg-Landau free en-
ergy functional accounting for interfaces through the square of the order parameter
gradient. The free energy density ψ is then split into a chemical free energy den-
sity ψch, a coherent mechanical energy density ψmech, and the square of the order
parameter gradient:

ρψ(φ,∇φ, c, 2
εe,Vk) = ρψch(φ, c) + ρψmech(φ, c,

2
ε,Vk) +

A
2
∇φ · ∇φ . (60)

The irreversible part of the behavior is described by the dissipation potential,
which can be split into three parts related to the three contributions in the residual
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dissipation in Eq.(57): the phase-field part Ωφ(φ, c, av) , the chemical part

Ωc(φ, c,∇μ) and the mechanical dissipation potential Ωmech(φ, c,
2
σ, Ak):

Ω(av,∇μ, φ, c, 2
σ, Ak) = Ωφ(c, φ, av) + Ωc(c, φ,∇μ) + Ωmech(φ, c,

2
σ, Ak) . (61)

The chemical free energy density ψch of a binary alloy is a function of the order
parameter φ and of the concentration field c. The coexistence of both phases α and β
discriminated by φ is possible if ψch is non-convex with respect to φ. Following [25],
ψch is built with the free energy densities of the two phases ψα and ψβ as follows:

ψch(φ, c) = h(φ)ψα(c) + (1 − h(φ))ψβ(c) +Wg(φ) . (62)

Here, the interpolating function h(φ) is chosen as h(φ) = φ2(3 − 2φ), and g(φ) =
φ2(1 − φ)2 is the double well potential accounting for the free energy penalty of the
interface. The height W of the potential barrier is related to the interfacial energy σ
and the interfacial thickness δ as W = 6Λσ/δ. Assuming that the interface region
ranges from θ to 1− θ, then Λ = log((1− θ)/θ). In the present work θ = 0.05 [2, 25].

The densities ψα and ψβ are chosen to be quadratic functions of the concentration
only:

ρψα(c) =
kα
2

(c − aα)2 and ρψβ(c) =
kβ
2

(c − aβ)
2 , (63)

where aα and aβ are the unstressed equilibrium concentrations of both phases which
correspond respectively to the minima of ψα and ψβ in the present model. kα and kβ
are the curvatures of the free energies.

Quadratic expressions are chosen for the chemical dissipation, which ensures the
positivity of the dissipation rate:

Ωφ(av) =
1
2

(1/β)av2 and Ωc(∇μ) =
1
2

L(φ)∇μ · ∇μ , (64)

where av is given by Eq. (58), β is inversely proportional to the interface mobility
and L(φ) is the Onsager coefficient, related to the chemical diffusivities Dα and Dβ

in both phases by means of the interpolation function h(φ) as

L(φ) = h(φ)Dα/kα + (1 − h(φ))Dβ/kβ . (65)

The state laws and evolution equations for the phase-field and chemical contribu-
tions can be derived as

b = A∇φ , μ = ρ
∂ψch

∂c
+ ρ

∂ψmech

∂c
, (66)

φ̇ =
1
β

av =
1
β

(
a − ρ∂ψch

∂φ
− ρ∂ψmech

∂φ

)
, J = −L(φ)∇μ . (67)
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Substituting the previous equations into the balance equations for generalized
stresses and mass concentration, the Ginzburg-Landau and usual diffusion equations
are retrieved, which represent respectively the evolution equations for order param-
eter and concentration:

∇·b − a = −βφ̇ + ∇· (A∇φ) − ρ∂ψch

∂φ
− ρ∂ψmech

∂φ
= 0 , (68)

ċ = −∇ · (−L(φ)∇μ) = −∇ ·
(
−L(φ)

(
∇∂ρψch

∂c
+ ∇∂ρψmech

∂c

))
. (69)

Note the coupling of mechanics and diffusion and phase-field evolution through the
partial derivatives of the mechanical free energy with respect to concentration and
order parameter.

4.3 Multi-phase Approach for the Mechanical Contribution

The second contribution to the free energy density is due to mechanical effects.
Assuming that elastic behavior and hardening are uncoupled, the mechanical part of
the free energy density ρψmech is decomposed into a coherent elastic energy density
ρψe and a plastic part ρψp as

ρψmech(φ, c,
2
ε,Vk) = ρψe(φ, c,

2
ε) + ρψp(φ, c,Vk) . (70)

Moreover, the irreversible mechanical behavior, related to the dissipative processes,

is obtained by a plastic dissipation potential Ωmech(φ, c,
2
σ, Ak). It is assumed to be a

function of order parameter, concentration, Cauchy stress tensor as well as the set
of thermodynamic force associated variables Ak in order to describe the hardening
state in each phase.

In the diffuse interface region where both phases coexist, we propose to use well-
known results of homogenization theory to interpolate the local behavior. The ho-
mogenization procedure in the mechanics of heterogeneous materials consists in
replacing an heterogeneous medium by an equivalent homogeneous one, which is
defined by an effective constitutive law relating the macroscopic variables, namely

macroscopic stress
2
σ and strain

2
ε tensors, which are obtained by averaging the cor-

responding non-uniform local stress and strain in each phase. Each material point
within a diffuse interface can be seen as a local mixture of the two abutting phases
α and β with proportions given by complementary functions of φ. The strain and
stress at each material point are then defined by the following mixture laws which
would proceed from space averaging in a conventional homogenization problem,
but which must be seen as arbitrary interpolations in the present case:

2
ε = χ

2
εα + (1 − χ)

2
εβ and

2
σ = χ

2
σα + (1 − χ)

2
σβ , (71)
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where
2
εα,

2
εβ are local fictitious strains and

2
σα,

2
σβ are local fictitious stresses in α

and β phases respectively and χ(x, t) is a shape function which must take the value 0
in the β-phase and 1 in the α-phase. The following choice is made in the phase field
context:

χ(x, t) ≡ φ(x, t) . (72)

The partition hypothesis, already used for the effective total strain tensor in Eq.
(51), requires, in a similar way, a decomposition of the total strain in each phase
into elastic, transformation and plastic parts:

2
εα =

2
εe
α +

2
ε�α +

2
εp
α and

2
εβ =

2
εe
β +

2
ε�β +

2
εp
β , (73)

where each point may depend on the local concentration c, but not on order pa-
rameter φ. In the proposed model, the elastoplastic and phase-field behaviors of
each phase are treated independently and the effective behavior is obtained using
homogenization relation (71). It is assumed that the mechanical state of α and β
phases at a given time are completely described by a finite number of local state

variables
(

2
εe

k,Vk

)
defined at each material point. The set of internal variables Vk, of

scalar or tensorial nature, represents the state of hardening of phase k: for instance,
a scalar isotropic hardening variable, and a tensorial kinematic hardening variable.
According to the homogenization theory, the effective elastic and plastic free energy
densities are given by the rule of mixtures as follows:

ρψe(φ, c,
2
ε) = φ ρψeα(c,

2
εe
α) + (1 − φ)ρψeβ(c,

2
εe
β) , (74)

ρψp(φ, c,Vk) = φ ρψpα(c,Vα) + (1 − φ)ρψpβ(c,Vβ) . (75)

Similarly, a mixture rule is used to mix the dissipation potentials of the individual
phases:

Ωmech(φ, c,
2
σ, Ak) = φΩmechα(c,

2
σα, Aα) + (1 − φ)Ωmechβ(c,

2
σβ, Aβ) , (76)

where the Aα,β are the thermodynamic forces associated with the internal variables
attributed to each phase.

Knowing the free energy and dissipation potentials, the evolution of all variables
can be computed. The remaining questions is the way of estimating the previously

defined fictitious stress and strain tensors
2
εα,β,

2
σα,β from the knowledge of the stress

and strain tensors
2
ε and

2
σ. Several homogenization schemes exist in the literature

that can be used to define these new fictitious variables. The most simple schemes
are the Voigt/Taylor and Reuss/Static models. We develop the Voigt/Taylor scenario
in the sequel.
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4.4 Voigt/Taylor Model Coupled Phase-Field Mechanical Theory

According to Voigt’s scheme, the fictitious strains are not distinguished from the
local strain. The local stress is then computed in terms of the fictitious stress tensors
by averaging with respect to both phases weighted by the volume fractions:

2
σ = φ

2
σα + (1 − φ)

2
σβ ,

2
ε =

2
εα =

2
εβ . (77)

The stresses of both phases
2
σα and

2
σβ are given by Hooke’s law for each phase:

2
σα =

4
Cα : (

2
εα − 2

ε�α −
2
εp
α) ,

2
σβ =

4
Cβ : (

2
εβ − 2
ε�β −

2
εp
β) , (78)

where
4
Cα and

4
Cβ are respectively the tensor of elasticity moduli in α and β phases.

As a result,

2
σ = φ

4
Cα : (

2
εα − 2

ε�α −
2
εp
α) + (1 − φ)

4
Cβ : (

2
εβ − 2
ε�β −

2
εp
β) . (79)

From the above relation, it follows that the strain-stress relationship in the homoge-
neous effective medium obeys Hooke’s law with the following equation:

2
σ =

4
Ceff : (

2
ε − 2
εp − 2

ε�) ,

where the effective elasticity tensor
4
Ceff is obtained from the mixture rule of the

elasticity matrix for both phases:
4
Ceff = φ

4
Cα + (1 − φ)

4
Cβ (80)

and the effective eigenstrain
2
ε� and plastic strain

2
εp vary continuously between their

respective values in the bulk phases as follows:

2
ε� =

4
C−1

eff : (φ
4
Cα :

2
ε�α + (1 − φ)

4
Cβ :

2
ε�
β ) ,

2
εp =

4
C−1

eff : (φ
4
Cα :

2
εp
α + (1 − φ)

4
Cβ :

2
εp
β) .

(81)

In the case of non-homogeneous elasticity, it must be noted that
2
ε� and

2
εp are not

the average of their respective values for each phase.
The proposed approach differs from the one most commonly used in phase-field

models, as popularized by Khachaturyan and co-workers, e. g. [24]. The latter rely
on mixture laws for all quantities within the interface, including the elastic moduli,
the transformation and plastic strain. The effect of these different choices on the
simulation of moving phase boundaries has been tested in [3] and [4]. In particular,
the impact of plasticity on the kinetics of precipitate growth has been evidenced.
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5 Conclusion

The general thermomechanical setting for modeling size effects in the mechanics
and thermodynamics of materials is based on the main assumption that microstruc-
ture effects can be accounted for by the introduction of additional degrees of free-
dom in addition to displacement, temperature and concentration. The additional
DOF and its gradient are expected to contribute to the power of internal forces of the
medium and to arise in the energy local balance equations and/or entropy inequal-
ity. They induce generalized stresses that fulfill an additional balance equation with
associated extra boundary conditions. A clear separation between balance equations
and constitutive functionals is adopted in the formulation. Constitutive equations
derive from the definition of a specific free energy density and dissipation potential.

The crossing of mechanical and physical approaches turns out to be fertile in
providing motivated coupling between both kinds of phenomena. As an example, we
have shown that the mechanics of heterogeneous materials can be useful to develop
a sophisticated and flexible constitutive framework of coupled viscoplasticity and
diffusion.

It was not possible to address applications that already exist in this context. In
particular, the presented models predict that viscoplasticity affects the morphology
and kinetics of precipitate growth in metals or during oxidation [2, 4, 20].

Special attention must now be dedicated to more precise description of coherent
vs. incoherent interfaces [5, 23, 34], and the associated specific interface conditions
that can be deduced from asymptotic analysis of phase-field models. On the other
hand, the targeted applications of strain gradient plasticity are crystal plasticity and
grain boundary migration [1, 9, 28], whereas strain rate gradients are thought to be
relevant for aging materials [29].
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