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A finite element formulation of a phase field model for alloys is proposed within the general framework of
continuum thermodynamics in conjunction with the concept of generalized stresses as proposed by Gur-
tin [1]. Using the principles of the thermodynamics of irreversible processes, balance and constitutive
equations are clearly separated in the formulation. Also, boundary conditions for the concentration
and order parameter and their dual quantities are clearly stated. The theory is shown to be well-suited
for a finite element formulation of the initial boundary value problem. The set of coupled evolution equa-
tions, which are the phase field equation and the balance of mass, is solved using an implicit finite ele-
ment method for space discretization and a finite difference method for time discretization. For an
illustrative purpose, the model is used to investigate the growth of an oxide layer at the surface of a pure
zirconium slab. Calculations in 1D show a good agreement with an analytical solution for the growth
kinetics. Then, 2D calculations of the same process have been undertaken to investigate morphological
stability of the oxide layer in order to show the ability of the finite element method to handle arbitrary
conditions on complex boundaries.

� 2008 Elsevier B.V. All rights reserved.
1. Introduction

A continuum thermodynamics framework was proposed in [1]
to formulate phase field models accounting for the diffusion of
chemical species and phase changes. According to this theory, an
additional balance equation for generalized stresses, called micro-
forces in the original theory and associated with the order param-
eter and its first gradient, is postulated. A clear separation is
enforced between basic balance laws, which are general and hold
for large classes of materials behaviour, and constitutive equations
which are material specific. Consequently, the derivation of the
appropriate material constitutive relationships can be further gen-
eralized in the presence of dissipative processes such as heat trans-
fer and plastic deformation. This formulation can be applied to
finite size non-periodic samples and heterogeneous materials
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ar), benoit.appolaire@mine-
mp.fr (G. Cailletaud), freder-
. Forest).
where the initial conditions and the boundary/interface conditions
for the concentration and order parameter must be clearly stated.

The finite element method is generally well-suited for handling
such initial boundary value problems on finite size specimens, in
contrast to the Fourier methods classically used for heterogeneous
microstructures with periodicity conditions [2]. Previous attempts
to apply the finite element method to phase transformations prob-
lems have been presented in [3] for solving Cahn–Hilliard equa-
tion, in [4] for the simulation of solidification processes and in
[5] for ferroelectric materials.

The objective of the present work is to derive a finite element
formulation for the phase field diffusion problem from the thermo-
dynamic formulation based on generalized stresses. It will be
shown that this enables the use of large classes of constitutive
equations and that it fits into the general computational thermo-
mechanical framework used in engineering mechanics as pre-
sented in [6].

The present model belongs to the class of diffuse interface mod-
els, where the local state of an inhomogeneous microstructure is
described by a conservative concentration field c and a non-conser-
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vative field / associated with the crystalline nature of the phases,
the so-called order parameter. It is based on the time-dependent
Ginzburg–Landau equation:

b _/ ¼ aD/� of0

o/
ð1Þ

In the phase field approach, the free energy density for an inhomo-
geneous system can be approximated by the Ginzburg–Landau
coarse-grained free energy functional, which contains a local free
energy density f0ðc;/Þ and a gradient energy term:

f ðc;/Þ ¼ f0ðc;/Þ þ
a
2
r/ � r/ ð2Þ

where the usual specific quadratic contribution with respect to r/
is adopted here but can be generalized if needed.

The article is organized as follows. First, a generalized principle
of virtual power is postulated involving generalized stresses. It is
used to derive the balance equations for generalized stresses. The
introduced power of internal forces then appears in the energy bal-
ance equation. The energy and entropy principles of continuum
thermodynamics are explicited in the isothermal case. Second,
the clear analogy between the proposed variational formulation
and that of conventional computational mechanics leads us to
the derivation of an implicit finite element scheme to solve the
considered initial boundary value problem, based on time and
space discretizations. Finally the method is applied to the predic-
tion of the kinetics of the growth of an oxide layer on zirconium.
The finite element method is suitable to study in particular the ef-
fect of initial free surface roughness on subsequent oxidation.

2. Balance of generalized stresses and fundamental statements
of thermodynamics

2.1. Principle of virtual power

The method of virtual power provides a systematic and
straightforward way of deriving balance equations and boundary
conditions in various physical situations [7,8]. The application of
this principle to an isolated region requires the determination of
the virtual powers of the system of generalized forces applied on
the body, in which the generalized stresses are not introduced di-
rectly but by the value of the virtual power they produce for a gi-
ven virtual order parameter /I. Note that macroscopic mechanical
effects are not introduced in this work. The wording ‘‘generalized
forces and stresses” is associated with primarily chemical events
contributing to the energy equation and correspond to the notion
of microforce in [1].

Guided by Gurtin’s theory [1], we suppose the existence of a
system of generalized forces, defined by a scalar internal micro-
stress p and a vector microstress n that perform work in conjunc-
tion with changes in the configurations of atoms, characterized by
the order parameter / and its first gradient. The virtual power of
internal generalized forces is defined by the integral over the vol-
ume V of a power density, which is assumed a priori to be a linear
form represented by the generalized stress measures p and n:

PðiÞð/I;VÞ ¼
Z

V
ðp/I � n � $/IÞdv ð3Þ

¼
Z

V
ðpþ $ � nÞ/I dv�

Z
oV
ðn � nÞ/I ds ð4Þ

The next step is to introduce the virtual power of external forces ap-
plied to the considered body. It can be split into a virtual power
density of long range volume forces, which can include, in general,
a volume density of scalar external microforce c and vector external
microforce c:
PðeÞð/I;VÞ ¼
Z

V
ðc/I þ c � $/IÞdv ð5Þ

¼
Z

V
ðc� $ � cÞ/I dvþ

Z
oV
ðc � nÞ/I ds ð6Þ

and a virtual power density of generalized contact forces, schemat-
ically represented by a surface density f of microtraction:

PðcÞð/I;VÞ ¼
Z

oV
f/I ds ð7Þ

We do not envisage here a possible power of inertial microforces
ðPðaÞð/I;VÞ ¼ 0Þ. According to the principle of virtual power, the to-
tal virtual power of all forces vanishes on any subdomain D � V and
for any virtual order parameter field /I:

8/I; 8D � V

PðiÞð/I;DÞ þPðcÞð/I;DÞ þPðeÞð/I;DÞ þPðaÞð/I;DÞ ¼ 0 ð8ÞZ
D

ðpþ $ � nþ c� $ � cÞ/I dvþ
Z

oD

ðf� n � nþ c � nÞ/I ds ¼ 0 ð9Þ

This identity can be satisfied for any field /I and 8D if and only if:

$ � ðn� cÞ þ pþ c ¼ 0 in V ð10Þ
f ¼ ðn� cÞ � n on oV ð11Þ

Eq. (10) expresses the general form of balance of generalized stres-
ses. It is identical with Gurtin’s balance of microforces, except the
external microforce contribution c that may exist in general. In
the remainder of this work, however, it is assumed that c ¼ 0 and
c ¼ 0 for the sake of brevity. Eq. (11) represents the boundary con-
dition for the generalized traction vector.

2.2. State laws and dissipation potential

According to the first principle of thermodynamics, the time
variation of the total energy in a material subdomain is equal to
the power of external forces acting on it. In the absence of inertial
forces, the total energy is reduced to the internal energy with den-
sity e. Then, the energy balance is stated asZ

V

_e dv ¼ Pext ¼
Z

oV
ðn � nÞ _/ds ¼

Z
V
$ � ðn _/Þdv ð12Þ

This identity is valid for any subdomain D � V . The local form of the
energy balance is obtained:

_e ¼ $ � ð _/nÞ ð13Þ

The second principle, called the entropy principle, is formulated as
follows:Z

V

_sdv P �
Z

oV
U � nds and U ¼ �l

J
T

ð14Þ

where s is the entropy density, U the entropy flux, J the diffusion
flux and l the diffusion potential.

Using the equation of local conservation of mass:

_c ¼ �$ � J ð15Þ

we obtain the following local form of the entropy inequality:

T _s� $ � ðlJÞP 0 ð16Þ

Combining the equation of the free energy density _f ¼ _e� T _s in the
isothermal case with Eqs. (13)–(16), leads to the Clausius–Duhem
inequality:

� _f � p _/þ n � $ _/� J � $l� l$ � J P 0 ð17Þ
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The free energy density is assumed to be a function of concentration
c, order parameter /, as well as its gradient $/. The Clausius–Du-
hem inequality can then be written as follows:

l� of
oc

� �
_c � pþ of

o/

� �
_/þ n� of

o$/

� �
� $ _/� J � $l P 0 ð18Þ

For every admissible process and for any given ðc;/;$/Þ, the
inequality (18) must hold for arbitrary values of _c, _/ and $ _/. The
microstress nðc;/;$/Þ and the diffusion potential lðc;/;$/Þ are as-
sumed independent of $ _/ and _c, in which these latter appear line-
arly in the inequality above (see e.g. [9,10]). The following state
laws are deduced:

l ¼ of
oc
¼ of0

oc
ð19Þ

n ¼ of
o$/

¼ a$/ ð20Þ

when the specific form (2) is adopted. The Clausius–Duhem
inequality then reduces to the residual dissipation:

D ¼ �J � $l� pdis
_/ P 0 with pdis ¼ pþ of

o/
ð21Þ

where pdis is the chemical force associated with the dissipative pro-
cesses, as introduced in [1].

In order to define the complementary laws related to the dissi-
pative processes, we postulate the existence of a dissipation poten-
tial function Xð$l;pdisÞ. The retained specific form is the
following:

Xð$l;pdisÞ ¼
1
2

Lð/Þ$l � $lþ 1
2
ð1=bÞp2

dis ð22Þ

where Lð/Þ and b are material parameters or functions.
The complementary evolution laws derive from the dissipation

potential:

_/ ¼ � oX
opdis

¼ �ð1=bÞpdis ð23Þ

J ¼ � oX
o$l

¼ �Lð/Þ$l ð24Þ

The convexity of the dissipation potential ensures the positivity of
dissipation.

Combining Eqs. (21) and (23), we get

p ¼ �b _/� of
o/

ð25Þ

The substitution of the two state laws and the complementary laws,
into the balance equations for mass concentration and generalized
stresses respectively leads to the evolution equations for concentra-
tion and order parameter:

_c ¼ �$ � ð�Lð/Þ$lÞ ¼ �$ � �Lð/Þ$ of
oc

� �
ð26Þ

$ � nþ p ¼ �b _/þ aD/� of
o/
¼ 0 ð27Þ

The usual diffusion and Ginzburg–Landau equations are thus
retrieved.

3. Finite element implementation

3.1. Variational formulation

The variational formulation of the phase field partial differential
equation directly follows from the formulated principle of virtual
power (8):

Ið/IÞ ¼
Z

V
ðp/I � n � $/IÞdvþ

Z
oV

f/I ds ¼ 0 ð28Þ
On the other hand, the usual weak form of the diffusion equation is
recalled:

IðcIÞ ¼
Z

V
ð _ccI � J � $cIÞdvþ

Z
oV

jcI ds ¼ 0 ð29Þ

where cI is an arbitrary field of virtual concentration.
Accordingly, the phase field problem can be formulated as

follows:
find fcðx; tÞ;/ðx; tÞg satisfying

at t ¼ 0
cðx;0Þ ¼ c0ðxÞ
/ðx;0Þ ¼ /0ðxÞ

at each instant t > 0
IðcIÞ ¼

R
V ð _ccI � J � $cIÞdvþ

R
oV jcI ds ¼ 0

Ið/IÞ ¼
R

V ðp/I � n � $/IÞdvþ
R

oV f/I ds ¼ 0

���������������
ð30Þ
3.2. Discretization

In order to obtain a finite element solution, the spatial domain
is subdivided into N elements. The nodal degrees of freedom are
the values at nodes of phase and concentration. The fields c and
/ are approximated within each element and at every time t, in
terms of nodal values by means of interpolation functions, within
each element:

cðx; tÞ ¼
Pn
i¼1

Ne
i ðxÞciðtÞ; /ðx; tÞ ¼

Pn
i¼1

Ne
i ðxÞ/iðtÞ

cIðx; tÞ ¼
Pn
i¼1

Ne
i ðxÞcI

i ðtÞ; /Iðx; tÞ ¼
Pn
i¼1

Ne
i ðxÞ/

I

i ðtÞ

$cðx; tÞ ¼
Pn
i¼1

Be
i ðxÞciðtÞ; $/ðx; tÞ ¼

Pn
i¼1

Be
i ðxÞ/iðtÞ

where n is the number of nodes in the element e containing x and
the shape functions are denoted by Ni. The matrix ½BeðxÞ� is defined
by the first derivatives of the shape functions, which read in the 2D
case:

½BeðxÞ� ¼

oNe
1

ox
oNe

2

ox
� � � oNe

n

ox
oNe

1

oy
oNe

2

oy
� � � oNe

n

oy

2
664

3
775 ð31Þ

Regarding time discretization, the Euler implicit method is applied.
Using the notation cðtÞ and /ðtÞ for the known values of the current
time step t;/ðt þ DtÞ and cðt þ DtÞ at time t þ Dt are estimated by
solving the following equations:

_cðt þ DtÞ ¼ cðt þ DtÞ � cðtÞ
Dt

ð32Þ

_/ðt þ DtÞ ¼ /ðt þ DtÞ � /ðtÞ
Dt

ð33Þ

cð0Þ ¼ c0; /ð0Þ ¼ /0 ð34Þ

Dt indicates the time increment, and c0;/0 are the initial conditions
for the concentration and order parameter.

After substituting the nodal approximation and the time dis-
cretization into Eq. (30), we deduce the element residual, which
can be written in the following form:

fReðc;/Þg ¼
Re

cðc;/Þ
Re

/ð/Þ

( )
ð35Þ

where Re
cðc;/Þ and Re

/ð/Þ are respectively the element residuals for
the variational formulation of classical diffusion (29) and phase
field (28), defined as follow:



Table 1
Parameters and data used for the zirconium–oxygen system at 350 �C

b ðJs=m3Þ 1:78� 105

r ðJ=m2Þ 0.1
d ðmÞ 7� 10�8

a ðJ=mÞ 7:14� 10�9

W ðJ=m3Þ 2:5� 107

Vm ðm3=moleÞ 10�5

Phase Zr ði ¼ 1Þ ZrO2 ði ¼ 2Þ
Ai (mole fraction) 0.24 0.66
kiVm ðJ=moleÞ 1 1
Di ðm2=sÞ from [15] 1:722� 10�20 6:368� 10�18
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ðRe
cÞi ¼

Z
Ve

Ne
i Ne

j
_ce

j � ½B
e�ijJj dvþ

Z
oVe

Ne
i jds ð36Þ

ðRe
/Þi ¼

Z
Ve

Ne
i pð/Þ � ½B

e�ijnj dvþ
Z

oVe
Ne

i fds ð37Þ

The global residual vector can be obtained by assembling the ele-
ment residuals for all finite elements using the matrix assembly
½Ae�:

fRð/Þg ¼
XN

e¼1

½Ae�:fReð/Þg ¼ f0g ð38Þ

following the usual definition in computational mechanics [6].
Given a known set of nodal degrees of freedom at time t, and

assuming that the residual vanishes at the next time step t þ Dt,
a set of non-linear equations results for the nodal degrees of free-
dom at t þ Dt. It is solved with the Newton–Raphson method in an
iterative manner. This requires the computation of the element
generalized stiffness matrix which is obtained by derivation of
the residual vector with respect to the degrees of freedom ðc;/Þ:

½Ke
t � ¼

oRe

ode

� �
¼
½Ke

cc� ½K
e
c/�

½Ke
/c� ½K

e
//�

" #
ð39Þ

with fdeg ¼
fceg
f/eg

� �

The element generalized stiffness matrix is divided into four sub-
matrices. Referring to Eqs. (36) and (37), the individual components
ðKe

ccÞij; ðK
e
c/Þij; ðK

e
/cÞij and ðKe

//Þij are

ðKe
ccÞij ¼

oðRe
cÞi

oce
j

¼
Z

Ve

1
Dt

Ne
i Ne

j � ½B
e�ik

oJ
oce

� �
kj

dv ð40Þ

ðKe
c/Þij ¼

oðRe
cÞi

o/e
j

¼
Z

Ve
�½Be�ik

oJ
o/e

� �
kj

dv ð41Þ

ðKe
/cÞij ¼

oðRe
/Þi

oce
j

¼
Z

Ve
Ne

i
op
oce

� �
j

dv ð42Þ

ðKe
//Þij ¼

oðRe
/Þi

o/e
j

¼
Z

Ve
Ne

i
op
o/e

� �
j
� ½Be�ik

on

o/e

� �
kj

dv ð43Þ

The elements used in this work are linear elements and quadratic
elements with reduced integration (4 Gauss points in square ele-
ments for instance).

4. Results

4.1. Parameters

Following Kim et al. [11], the free energies of the two-phases
are interpolated for intermediate values of / with a polynomial
hð/Þ varying in a monotonic way between both phases. To this free
energy landscape, a double well potential gð/Þ is added, accounting
for the free energy penalty of the interface.

f0ðc;/Þ ¼ wðc;/Þ þWgð/Þ ð44Þ

where wðc;/Þ ¼ hð/Þf1ðcÞ þ ½1� hð/Þ�f2ðcÞ. The specific polynomials
gð/Þ ¼ /2ð1� /Þ2 and hð/Þ ¼ /2ð3� 2/Þ have been chosen as com-
monly done in previous works [12].

For simplicity, the free energy densities of both phases f1 and f2

have been described by simple quadratic functions of the concen-
tration c [13]:

fiðcÞ ¼
1
2

kiðc � AiÞ2 ð45Þ

where i ¼ f1;2g denotes phase 1 or 2.
The constants k1, k2 are the curvatures of the free energies with

respect to concentration (positive to avoid any spinodal decompo-
sition); A1;A2 are the equilibrium concentrations of both phases
delimiting the two-phases region in the phase diagram, and corre-
sponding to the minima of f1 and f2 for the particular quadratic
functions chosen.

The phase field parameters a and W have been related to the
interface energy and thickness, respectively r and d. As noted by
Kim et al. [11], there are in general two contributions to the inter-
facial energy: the first one coming from the double well function
gð/Þ, the second one coming from the variation in concentration
within the interface. Indeed, at a plane interface at equilibrium,
Eq. (1) becomes:

a
d2/eq

dx2 ¼
of0

o/eq
ð46Þ

where x is the distance normal to the interface. This equation can be
integrated to get the phase field at equilibrium /eqðxÞ, by noting
that the right hand side of Eq. (46) can be transformed into the dif-
ferential of the grand potential x ¼ f � leq c where leq is the diffu-
sion potential at equilibrium [11]. Indeed:

dx ¼ ox
o/

d/ ð47Þ

because of=oc ¼ leq. This leads to the following relationship:

r ¼
ffiffiffiffiffiffi
2a
p Z 1

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð/eqÞ �xð0Þ

q
d/eq ð48Þ

where xð/eqÞ �xð0Þ ¼ wðcð/eqÞ;/eqÞ þWgð/eqÞ. Because the mag-
nitude of wðcð/eqÞ;/eqÞ scales with the curvatures ki, we have cho-
sen k1Vm ¼ k2Vm ¼ 1 J/mole, where Vm is the molar volume. This
leads to a very small contribution of the concentration profile com-
pared to that of the double well term Wgð/Þ. Neglecting
wðcð/eqÞ;/eqÞ in xð/eqÞ gives the standard result:

r ¼
ffiffiffiffiffiffiffiffi
aW
p

=ð3
ffiffiffi
2
p
Þ ð49Þ

d ¼ 2:94
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2a=W

p
ð50Þ

where 2.94 in the last relation comes from the way the interface
width d has been defined, i.e. for values of / in the range
[0.05;0.95]. It must be noted that taking values for k1 and k2 of
the same order of magnitude as W would disqualify Eq. (50) for
relating the interfacial energy and the double well height W . Of
course, this could have some large effects on the results, especially
on the phenomena involving interface curvatures, such as morpho-
logical stabilization/destabilization as studied in the following
subsection.

The Onsager coefficient Lð/Þ is defined with respect to the
chemical diffusivities D1 and D2 in both phases by means of the
interpolation function hð/Þ:

Lð/Þ ¼ hð/ÞD1=k1 þ ð1� hð/ÞÞD2=k2 ð51Þ

where the ki ensure that Fick’s law is recovered in the bulk phases.
Finally, the phase field mobility 1=b has been set by successive trials
with decreasing b such as to obtain a diffusion controlled mode of
growth.



Fig. 2. The growth kinetics of the oxide layer: black dots are related to the profiles
in Fig. 1; the continuous line corresponds to the best fit with a parabolic law.
Experimental data from [15] obtained in Zircaloy-4 have been superimposed with
white symbols.
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4.2. Oxidation of zirconium

The model has been implemented in the finite element code
ZeBuLoN and used to study the growth of oxide layers in a phase
at 350 �C in the simple Zr–O binary system. The parameters are re-
ported in Table 1. An interfacial energy of 100 mJ/m2 corresponds
to a coherent/semi-coherent interface between the oxide and zir-
conium [14]. An interface thickness d about two orders of magni-
tude larger than a realistic value has been chosen to render the
computations tractable.

A regular mesh with 1000 linear elements has been used to dis-
cretized a 1 lm long 1D slab. An adaptive time step implemented
in ZeBuLoN as a standard option has been used for the calculations:
small time steps of the order of 10�6 s were necessary to achieve a
good convergence at the beginning of the process, whereas large
time steps of the order of 103 s were reached at the end of the cal-
culations. The following boundary conditions to the system have
been applied on the right side: n � n ¼ 0 and J � n ¼ 0; and on the
left side corresponding to the surface: n � n ¼ 0 and c ¼ 0:68. The
Dirichlet condition imposed at the left side is assumed to mimic
the reaction between the oxide surface and the oxidizing atmo-
sphere. A value slightly above the stoichiometric concentration
has been chosen to rapidly initiate the growth of the layer and
shorten an initial transient regime.

A profile of / in tanh has been set corresponding to an initial
84 nm thick ZrO2 layer at the surface of the zirconium slab. A
decreasing concentration profile has been prescribed in ZrO2 be-
tween the surface and the interface at equilibrium. A flat profile
is imposed at 0.22 a value below equilibrium in a corresponding
to a phase undersaturated in oxygen (Fig. 1).

The concentration profiles are shown at different times in Fig. 1.
The steep gradients locate the interface between the oxide and the
metal. At the beginning of the process (e.g. the curve after 2 h of
isothermal holding), the concentrations at interface are slightly
higher than the equilibrium ones (dashed lines), due to the dissipa-
tion of free energy associated with interfacial kinetics and with dif-
fusion of oxygen across interface. These dissipation processes are
magnified because of the unrealistically large interface width (Ta-
ble 1), chosen for computational purpose as commonly done in
phase field simulations. These spurious effects can be eliminated
by performing a careful asymptotics analysis (e.g. [13]) together
with using an adaptive mesh refinement technique as discussed
thoroughly in [16]. These improvements will be undertaken in a
Fig. 1. Evolution of the concentration profile in oxygen (in mole fraction) near the
surface of the slab; numbers labelling the curves are the related holding times in
hours. Horizontal dashed lines are the equilibrium concentrations.
forthcoming study. Very quickly, a gradient in oxygen content
develops in a in front of the growing oxide. The inward growth
process is thus driven by diffusion of oxygen in both phases.

The time evolution of the oxide thickness De shown in Fig. 2 has
been deduced from the profiles by tracking the position of / ¼ 0:5.
Apart from the beginning of the process which is strongly influ-
enced by the initial conditions, the growth law is parabolic, i.e.
De ¼ K

ffiffi
t
p

. The growth constant K ¼ 7:5 � 10�10 m=s has been
determined by linear regression of ðlnðDeÞ; lnðtÞÞ, discarding the
first points. This value is in good agreement with the value of
7:75 � 10�10 m=s given by the analytical solution of [17]. The differ-
ence can be attributed to the dissipation of the driving force by the
interfacial phenomena. Moreover, it must be noticed that a good
agreement with the experimental measurements of [15] is
achieved, as shown in Fig. 2.

In order to illustrate the advantage of the finite element formu-
lations over the other methods used in phase field modeling, 2D
calculations have been performed to investigate a problem where
the surface geometry may play a role: the morphological stability
Fig. 3. Evolution vs. time of the concentration field in oxygen during the growth of
an oxide with an interface initially destabilized by a sine.



Fig. 4. Evolution vs. time of the concentration field in oxygen during the growth of
a sinusoidal oxide layer.
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of the oxide layer. The finite element mesh is composed of 15,000
quadrangular linear elements, and time steps similar to the 1D case
have been used for the calculations. As shown in [17] for the nitrid-
ing of pure iron, the configuration of the diffusion fields has a sta-
bilizing effect with respect to fluctuations, at both the layer/matrix
interface and the layer surface. Hence, small sine fluctuations have
been imposed initially either at the interface (Fig. 3), or at both sur-
face and interface (Fig. 4), with different wavelengths. In both
cases, it is observed that the corrugations have completely disap-
peared after thousand seconds, i.e. on a short time scale when
compared to the growth process. This result is again in accordance
with the analytical analysis of a similar problem [17], and shows
the potentiality of the present formulation and implementation
for the phase field modeling.

5. Conclusion

A finite element formulation for a phase field model for alloys
has been presented, based on the introduction of generalized stres-
ses and their balance, and the framework of the thermodynamics
of irreversible processes. Using the finite element method to dis-
cretize space and the finite difference method to discretize time,
numerical simulations were performed to investigate the oxidation
kinetics of pure zirconium. Other required validations were per-
formed concerning mesh size and types of elements, which were
not reported here.

The formulation, presented here, allows, on the one hand, the
application of any arbitrary form for the free energy, such as Fol-
ch–Plapp [18] and Khachaturyan models [19] and, on the other
hand, the use of finite size samples with arbitrary geometries
and for very general non-periodic or periodic boundary conditions.
Furthermore, an extension of the present model will be obtained
by introducing other general processes that include dissipation,
like in the coupling with mechanics, especially plasticity.
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