
Available online at www.sciencedirect.com
www.elsevier.com/locate/actamat

Acta Materialia 57 (2009) 3902–3915
Experimental and numerical analysis of toughness anisotropy
in AA2139 Al-alloy sheet

T.F. Morgeneyer a,c,*, J. Besson a, H. Proudhon a, M.J. Starink b, I. Sinclair b

a Mines ParisTech, Centre des matériaux, CNRS UMR 7633, BP87 91003 Evry Cedex, France
b Materials Research Group, School of Engineering Sciences, University of Southampton, Southampton SO17 1BJ, UK

c Alcan Centre de Recherches de Voreppe, BP 27, 38341 Voreppe Cedex, France

Received 13 March 2009; received in revised form 21 April 2009; accepted 24 April 2009
Available online 28 May 2009
Abstract

Toughness anisotropy of AA2139 (Al–Cu–Mg) in T351 and T8 conditions has been studied via mechanical testing of smooth and
notched specimens of different geometries, loaded in the rolling direction (L) or in the transverse direction (T). Fracture mechanisms
were investigated via scanning electron microscopy and synchrotron radiation computed tomography. Contributions to failure anisot-
ropy are identified as: (i) anisotropic initial void shape and growth; (ii) plastic behaviour including isotropic/kinematic hardening and
plastic anisotropy; and (iii) nucleation at a second population of second-phase particles leading to coalescence via narrow crack regions.
A model based in part on the Gurson–Tvergaard–Needleman approach is constructed to describe and predict deformation behaviour,
crack propagation and, in particular, toughness anisotropy. Model parameters are fitted using microstructural data and data on defor-
mation and crack propagation for a range of small test samples. Its transferability has been shown by simulating tests of large M(T)
samples.
� 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Anisotropic mechanical properties are common in plas-
tically deformed or thermomechanically processed metallic
materials, e.g. in rolled sheet. One particularly important
issue in design is the toughness anisotropy of these materi-
als. Furthermore, the transferability of toughness trends
between small test pieces and larger structures is an impor-
tant aspect in optimizing materials performance in practice.
Thus, a validated model linking microstructure and
fracture micromechanisms to full-scale component behav-
iour (e.g. full-scale toughness) will be of great value in
optimizing materials performance and in providing predic-
tions of full-scale component behaviour.
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Anisotropic plastic behaviour has been the subject of
many studies, and a number of models have been proposed
at both the microscopic level using a polycrystalline
description for the material (e.g. [1]) and at the macro-
scopic level (e.g. [2]). Studies dealing with anisotropic rup-
ture properties are less numerous, although there are many
examples for cases where the fracture resistance of struc-
tures made of sheet materials must be qualified, e.g. steel
pipelines, aluminium alloys for aircraft fuselage, zirconium
alloys for nuclear fuel cladding. Several causes may lie at
the origin of anisotropic rupture properties:

(i) Anisotropic plastic properties, usually related to the
development of specific crystallographic textures,
lead to different mechanical responses in different
directions so that the plastic energy dissipated during
fracture may be anisotropic [3,4]. In addition, local
crack tip stresses and strains may be affected by plastic-
ity and in particular by the shape of the yield function.
rights reserved.
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Depending on the loading direction, local parameters
controlling damage growth (such as stress triaxiality
ratio) may depend on the loading direction [5].

(ii) Processing conditions (e.g. hot rolling) may create
initially anisotropic defects such as elongated voids
and/or inclusions and anisotropic defect distribution
which will lead to anisotropic fracture properties as
experimentally shown in Refs. [6–10].

(iii) Sheet materials are often prestrained so that they can
exhibit anisotropic properties due to kinematic hard-
ening. Recent experimental results have shown that
prestrain can affect ductility [11].

Several models incorporating the above-mentioned pos-
sible mechanisms for fracture anisotropy have been pro-
posed in the literature. Models are either based on the
micromechanical Gurson model [12] and its ‘‘standard”

extension proposed by Tvergaard and Needleman (the
so-called GTN model) [13] or the phenomenological
Lemaitre model [14,15]. In the present study, extensions
based on the GTN model will be used. Introducing plastic
anisotropy can be easily done by replacing the von Mises
stress in the expression of yield surface given by the GTN
model by any anisotropic stress measure. The Hill [16]
equivalent stress approach was first used as in Refs.
[3,17,18] but more advanced macroscopic models
[2,19,20] recently proposed can also be used as shown in
Refs. [4,21]. Models accounting for initial void shape and
void shape evolution have been developed for prolate and
oblate voids by Gologanu and co-workers [22,23]. The
model was further extended to account for void coales-
cence [8,24–26] based on the initial developments of Tho-
mason [27]. These works have shown that ductility and
toughness are increased in the case of elongated cavities
with the principal loading direction corresponding to the
axis of symmetry due to both the cavity shape which slows
down void growth and the increased inter-void ligament
which delayed void coalescence. The opposite effect is
obtained for flat cavities. The model has, however, a major
limitation: cavities are assumed to be and remain axisym-
metric so that the model must be adapted for non-axisym-
metric mechanical loadings (in practice as soon as the
model is used in a finite-element code) [28]. The model
was coupled with Hill anisotropy in Ref. [28] to study duc-
tility of an X52 pipeline steel. Models based on the GTN
approach that simultaneously account for ductile damage
and kinematic hardening have been proposed in the litera-
ture, but little verification or testing in comparison with
actual experiments has been undertaken [29–31]. Up to
now, these models have not been coupled either with
Table 1
Composition limits of alloy AA2139 (wt.%).

Si Fe Cu Mn

60.1 60.15 4.5–5.5 0.20–0.6
plastic anisotropy or with void shape effects. These models
account for void growth leading to final failure by internal
necking [27] but do not account for coalescence by void
sheeting [32]. This phenomenon can, however, be observed
in thin sheet materials [33] and should be accounted for.

In this work, an experimental study involving the deter-
mination of microstructural parameters, mechanical testing
and fractography including novel tomography studies of
arrested cracks at high stress triaxiality is presented. Subse-
quently a new model is suggested that incorporates: (i)
anisotropic initial void shape and growth; (ii) plastic
behaviour, including isotropic/kinematic hardening and
plastic anisotropy; and (iii) nucleation at a second popula-
tion of second-phase particles leading to coalescence. To
the best of our knowledge it is the first model to include
these three components. The effect of void shape is
accounted for using a novel simplified description which
has the advantage of not being restricted to axisymmetric
cases. Model parameters are determined using the experi-
mentally obtained data. The model incorporates simple
representations of coalescence by internal necking and void
sheeting. The model is validated by comparing simulated
and experimental load–displacement curves obtained on
large M(T) panels [34].

2. Experimental

A 3.2 mm sheet of AA2139-T351 was supplied, i.e. solu-
tionized, 2% stretch and naturally aged (see Table 1 for
composition). Testing was carried out on T351 material
(for brevity identified here as ‘‘T3”), and after additional
ageing at 175 �C for 16 h to approximate a T8 condition.
The intermetallic content has been measured via grey value
thresholding of field emission gun scanning electron
microscopy (FEG-SEM) images obtained in backscattered
electron mode. Dispersoids have been observed with a FEI
Quanta 600 microscope.

In this study four types of specimen have been utilised
(see Fig. 1): smooth flat tensile specimens, notched flat ten-
sile specimens (EU2), Kahn tear test specimens, and large
M(T) panels. Tests on notched EU2 specimens in particu-
lar allow fracture properties to be investigated at increased
stress triaxiality. Two orientations of loading in the sheet
plane have been investigated for all samples: rolling direc-
tion (L) and long transverse direction (T). In Kahn and
M(T) specimens loaded in the L direction, cracks will prop-
agate in the T direction; these tests are referred to as L–T,
and vice versa for T–L designated tests. At least two tests
have been performed in each condition/direction combina-
tion, whilst for the M(T) sample only one test has been
Mg Ag Ti Zn

0.20–0.8 0.15–0.6 60.15 60.25



Fig. 1. Specimen geometries for: (a) tensile samples; (b) EU2 samples; (c)
Kahn tear test samples; (d) M(T) samples (all dimensions in mm).

Fig. 2. FEG-SEM image in backscattered mode (20 kV) of in the L–T
plane showing dispersoids.
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performed per condition/direction. For technical reasons,
M(T) tests for T–L loading have only been carried out
for the T3 condition. Testing speeds are given in Ref. [21].

The sample preparation for synchrotron radiation com-
puted tomography (SRCT) and SEM has been carried out
as described previously [10]. For the analysis of arrested
cracks in the initiation region, use was made of custom
image data manipulation routines. The cracks are first
binarized using a series of morphological operations then
analyzed using a ‘‘sum along ray algorithm” [35]. The
aim was to precisely determine and quantify the local crack
characteristics such as opening within the three-dimen-
sional (3-D) volume.

3. Experimental results and analysis

3.1. Material microstructure

Mean anisotropic pore dimensions (3-D Feret measure-
ments) and volume fractions of pores and particles are
given in Table 2. Mean Feret dimensions of 3-D Voronoi
tessellation [36] of cells around pores and intermetallic par-
ticles revealed isotropic distribution of pores and particles.

Some intermetallic particles were, however, seen to be
aligned as stringers in the L direction with stringer dimen-
sions of the order of 15–30 lm (cf. 1–10 lm in T and
1–6 lm in the short-transverse direction (S) (see also Ref.
[10])). Fig. 2 shows a FEG-SEM image in backscattered
Table 2
Porosity and intermetallic particle content, dimensions and distribution of th
previously [10]).

Porosity Intermeta

fv in (%) 0.34 0.45
With a variation of ±10% when setting extreme grey
values

±15% (st
magnifica

Mean Feret dimensions of pores in lm Mean Fer

L T S L

7.6 5.4 4.5 23
mode of the material in the L–T plane. Dispersoids can
be seen to be elongated in the L direction.

3.2. Tensile testing on smooth and notched flat specimens

Fig. 3 shows the results of tensile tests on smooth spec-
imens. In the T3 condition (Fig. 3a) tensile behaviour is
anisotropic: for testing in the L direction yield strength as
well as loads for the same elongation are higher than for
testing in the T direction. The transition between the elastic
and plastic part of the deformation curve is smooth for T
testing but relatively sharp for L testing. The through-
thickness deformation is essentially the same for the two
testing directions; the slope of the through-thickness varia-
tion vs. applied strain is close to 0.5 as for isotropic behav-
iour. The slight difference in initial tensile curve shape is
likely to be mostly due to the prestraining by �2% that
the material has undergone. For the material in the T8 con-
dition (Fig. 3b) tensile deformation curves in the different
loading directions, as well as the corresponding through-
thickness deformation curves, are essentially identical.

The results of EU2 testing (curves not presented here for
brevity) reveal anisotropy in the load curve for the T3
material only, whilst final failure occurs at similar opening
displacements. Consistent with the tensile tests, the L and T
loading of EU2 samples in the T8 condition do not show
significantly different plastic behaviour.
e AA2139 alloy (pore content and pore Feret dimension were reported

llic particles

andard error based on repeat measurements at different locations and
tions)

et dimensions of Voronoi cells around 2nd phase particles and pores in lm

T S

24 25
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Fig. 3. Tensile tests experimental and simulation for naturally aged and artificially aged (T3 and T8) material.

Table 3
Unit initiation energy (UIE) for Kahn tear tests for the loading directions
L–T and T–L and T3 and T8 conditions.

T3 (N/mm) T8 (N/mm)

L–T 171 104
T–L 148 79

T.F. Morgeneyer et al. / Acta Materialia 57 (2009) 3902–3915 3905
3.3. Kahn tear testing

Fig. 4 shows the results of the Kahn tear tests [37] in terms
of force F divided by the initial ligament area A0 as a function
of the crack mouth opening displacement (CMOD) along
with the crack length as a function of the CMOD for L–T
and T–L testing for the T3 and T8 conditions. For the T3
material (Fig. 4a) the nominal load is smaller for the T–L
tests as compared to the L–T tests up to maximum loads
from �100 MPa onwards (i.e. indicating a lower initiation
toughness). The load differences between the T–L and L–T
tests are even higher in the propagation region and crack
growth is faster in the T–L test orientation than in the L–T
orientation. The unit initiation energy (UIE, defined as the
integral

R
F/A0 dld, where dld is the pin displacement, taken

from the start of the test to maximum load [7]) for the tests
are shown in Table 3. For the T3 condition the UIE for
the T–L sample is �15% lower than for the L–T sample.
For the T8 material (Fig. 4b) the nominal load is very similar
for both sample orientations up to the maximum load of the
T–L sample. However, as the maximum load of the L–T
sample is higher and is reached at increased pin displacement,
the UIE is 30% higher for the L–T sample than for the T–L.
Nominal stresses in the propagation region are substantially
lower for the T–L sample than for the L–T sample and crack
growth is faster for the T–L test compared to the L–T.
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3.4. M(T) testing

Fig. 5 shows the results of M(T) tests for (a) the T3 con-
dition (T–L loading only) and (b) the T8 condition (for
both loading directions). Strong toughness anisotropy
can be identified for the T8 material. The maximum load
of the L–T sample is �24% higher than for the T–L sample,
which is clearly higher than the corresponding anisotropy
measured for the Kahn tear tests (8%, see Fig. 4).
4. Fractography

4.1. Fractography of Kahn samples

For brevity the fractography images are not presented
here but the results are briefly summarized. In the flat tri-
angular region where the crack initiates from the notch
[33] coarse voids appear to have mainly coalesced via
(b) 
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Fig. 5. M(T) test results for simulation and experiment for naturally aged and artificially aged (T3 and T8) materials.
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impingement. The dimples are coarser for the T3 condition
than for the T8. For the T–L samples the surface morphol-
ogy is more obviously directional, with void chains appar-
ent on the fracture surface parallel to the material rolling
direction.

In the propagation region (the slanted crack growth) at
mid-thickness, fracture still seems to be dominated by
coarse voiding. However, areas containing fine dimples
can also be observed which appear consistent with shear
decohesion or also called void sheeting [32]. At the edge
of the specimen, the area coverage of microscopically flat
regions is higher than at mid-thickness. Fractographic
assessment of M(T) sample fracture surfaces has not been
carried out here: it has been identified previously that for
similar strength Al-alloy sheet, stress states and fracture
mechanisms are very similar for Kahn tear test samples
and M(T) samples [33].

4.2. SRCT study of fracture initiation in Kahn tear test
samples

Tomography scans of arrested cracks allow observation
of the initial stages of failure and the subsequent evolution
of the fracture process immediately ahead of the crack tip.
In the present study the fracture evolution during (flat)
crack initiation at high levels of stress triaxiality ahead of
the machined notches has been captured in arrested cracks
via tomography (also see Fig. 4).

Fig. 6a and b shows a local crack opening map of those
cracks for the different loading directions and conditions,
as obtained via the sum along ray method [10,35] and 2-
D sections normal to the crack propagation direction of
cracked scanned volumes (Fig. 6a and b). The locations
where the sections are taken from are indicated with lines
on the respective COD maps. In all cases there are voids
reaching out ahead of the main triangular body of the
crack that are often linked to the main crack through nar-
row (in terms of opening) coalescence regions that may
result from nucleation of voids at a second population of
small second-phase particles [33]. An especially long void
chain reaching ahead the main crack can be seen for the
T8 T–L image (see dashed box). Even at this stage of
fracture, which is governed by high stress triaxiality that
is expected to favour void growth and subsequent coales-
cence via void impingement [33], clear evidence of coales-
cence through narrow flat regions is provided in Fig. 6 at
the respective crack fronts. Comparison of Fig. 6a with b
further shows that coarse voids are larger and more
aligned/elongated in crack growth direction in the T8 T–
L sample than in the T8 L–T sample, which is consistent
with the observation made in T8 T–L and L–T samples
of the same material in the propagation region [10]. This
results in shorter intervoid ligament distances between for
the T–L T8 sample than for the T8 L–T sample.

2-D sections of the crack in the T8 T–L sample are seen
in Sections 1 and 2 of Fig. 6c at �550 and 200 lm from the
crack tip, respectively. Abrupt jumps of 100–200 lm are
discernible in the cracks in Fig. 6c. The different crack
heights are seen to be linked via narrow regions that lie
in the sheet plane (see Fig. 6). In the first instance they
are thought to lie on grain boundaries as has been identi-
fied for an AA6156 alloy [38], but this has not been explic-
itly confirmed.

Fig. 6d, Sections 1 and 2, show the T8 L–T crack at
�700 and �300 lm from the crack tip, respectively. Void
impingement in columns and shear decohesion that may
be the start of slant fracture are discernible. Section 2 of
Fig. 6d shows the crack at �300 lm from the notch tip:
at the right part of the crack a narrow region links two
coarse voids.

5. Constitutive model

The model aims at representing anisotropic ductile fail-
ure of the 2139 aluminium alloy and therefore needs to
include the description of the following phenomena: (i)
plastic anisotropy, (ii) mixed isotropic/kinematic harden-
ing, (iii) ductile damage by void growth and void sheeting.
The model is based on extensions of the GTN model
[12,13]. Kinematic hardening is represented by an internal
back stress tensor X . The yield surface is then expressed
as a function of B = r – X, where r is the Cauchy stress
tensor. Plastic anisotropy is introduced using an aniso-
tropic stress measure BE defined as [2,20]:



Fig. 6. Representation of the local cack tip opening via a ‘‘sum along ray method” for: (a) T–L loading in the T8 condition; (b) L–T loading in the T8
condition (with lines indicating locations of the 2-D sections) and 2-D sections of the SRCT data normal to the crack growth direction; (c) T–L loading in
the T8 condition; (d) L–T loading in the T8 condition.
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BE ¼
1

2
j~B2 � ~B3jb þ j~B3 � ~B1jb þ j~B1 � ~B2jb
� �� �1

b

; ð1Þ

where ~B1 � ~B2 � ~B3 are the eigenvalues of a modified stress
deviator ~B ¼ L : B where the fourth-order tensor L is ex-
pressed as:

L¼

ðcTT þcSSÞ=3 �cSS=3 �cTT =3 0 0 0

�cSS=3 ðcSSþcLLÞ=3 �cLL=3 0 0 0

�cTT =3 �cLL=3 ðcLLþcTT Þ=3 0 0 0

0 0 0 cLT 0 0

0 0 0 0 cTS 0

0 0 0 0 0 cSL

0
BBBBBBBB@

1
CCCCCCCCA
; ð2Þ

where ci = LL,. . .,SL are material coefficients representing
plastic anisotropy. Directions L, T and S are assumed to
be material directions. Coefficient b represents the shape
of the yield function. An isotropic material corresponds
to ci = LL,. . .,SL = 1. The usual von Mises yield criterion is
then obtained for b = 2 or 4. The Tresca yield criterion cor-
responds to b = 1 or b = +1.

To describe ductile damage, the GTN model is used to
define effective scalar stresses [12,13]. Let a be any sec-
ond-order tensor. The corresponding effective stress, a*, is
implicitly defined by:

Wða�; aE; aK ; f Þ ¼
a2

E

a2
�
þ 2q1f� cosh

q2

2

aK

a�

� �
� 1� q1f 2

� ¼ 0;

ð3Þ
where f represents the void volume fraction (porosity). f* is
a function introduced by Tvergaard and Needleman [13] to
represent the increased damaging effect of voids during
coalescence:

f � ¼
fg þ fn for f g < fc

fc þ fn þ dðfg � fcÞ for f g > fc

(
; ð4Þ
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where fc represents the critical growth void volume fraction
for which coalescence via impingement starts. d is an
‘‘accelerating” factor which represents the increased soften-
ing effect of voids once coalescence has started. aE is the
anisotropic stress measure defined by Eq. (1). aK is intro-
duced to represent in a simplified way 3-D anisotropic void
growth and is defined by:

aK ¼ aLLaLL þ aTT aTT þ aSSaSS ; ð5Þ
where ai = LL,TT,SS are parameters to be determined. This
approximate solution is indeed easier to implement and
computationally more efficient than the anisotropic models
proposed in Refs. [22,23,25,28] which explicitly account for
cavity shape effects. Note that these models are limited to
axisymmetric cavities subjected to axisymmetric loading
conditions (although they are extended to deal with generic
3-D loadings), whereas the extension proposed here is al-
ways valid. The yield function is then constructed using
the effective stress associated to B:

U ¼ B� � RðpÞ; ð6Þ
where the function R(p) represents isotropic hardening and
p a scalar effective plastic strain. The plastic strain rate ten-
sor is given by the normality rule as:

_ep ¼ ð1� f Þ _p @U
@r
¼ ð1� f Þ _p @B�

@r
¼ _pn: ð7Þ

It is then necessary to derive evolution laws for the various
model variables. The model uses an additive decomposition
of the elastic and plastic strain rates so that _e ¼ _ee þ _ep,
where _e is the strain rate tensor and _ee and _ep are the elastic
and plastic strain rate tensors, respectively. The Cauchy
stress is computed from the elastic strain tensor using
Hooke’s law as r ¼ E : ee, where E is the fourth-order stiff-
ness tensor. Damage growth is controlled by void growth
and void nucleation. Accordingly the evolution law for
porosity is expressed as [39]:

_f ¼ ð1� f Þtraceð_epÞ þ ðA1
n þ A2

nÞ _p; ð8Þ
where the first term on the right-hand side corresponds to
void growth (i.e. mass conservation) and the second term
corresponds to void nucleation. Material parameter A1

n

controls nucleation rate for void nucleation at coarse inter-
metallic particles. A2

n controls nucleation at a second popu-
lation of smaller second-phase particles observed in slanted
areas, which appears to control fracture in low-stress triax-
iality regions as evidenced in Ref. [33]. A2

n accounts for
shear decohesion and void sheeting although slanted crack
paths are not simulated (see below). Kinematic hardening
is described using an intermediate tensorial variable, a,
for which the evolution law is given following the standard
expression for non-linear kinematic hardening [40] by:

_a ¼ _ep �
3

2

D
C

_pX ¼ _p n� 3

2

D
C

X
� �

; ð9Þ

where D and C are two material parameters. The equation
used for undamaged materials [40] to relate a and the back
stress X (i.e. X ¼ 2
3
Ca) cannot be directly used as the macro-

scopic back-stress would not vanish as the material breaks
(i.e. for f* = 1/q1). To solve this problem, one defines an
intermediate back-stress, v, which can be interpreted as the
back-stress at the microscopic level. v is related to a using
by: v ¼ 2

3
Ca. Following Besson and Guillemer-Neel [31],

the actual back-stress, X, is computed such that:

v ¼ 2

3
X �

@X �
@X

: ð10Þ

In practice, this equation must be iteratively solved with re-
spect to X. Computing X � as the solution of WðX �;
X E;X K ; f Þ = 0 would not give expressions equivalent to
that proposed in Ref. [40] for the undamaged material in
the limit case f = 0 as plastic anisotropy would be taken
into account. For that reason, it is preferable to use an iso-
tropic definition of the effective stress to apply the previous
equation. In that case, X � is defined as the solution of
WðX �;X eq;X kk; f Þ = 0 where Xeq and Xkk are, respectively,
the von Mises invariant of X and its trace.

When standard finite-element techniques are used, mod-
els including damage lead to material softening and mesh
size dependence. In that case, it is necessary to fix the mesh
size in order to obtain results transferable from one sample
to another [21,41–43] (although improved, so-called ‘‘non-
local” models can be used to obtain mesh-independent
results [44,45]). Consequently, the mesh size, and in partic-
ular the mesh height in the direction perpendicular to the
crack plane, h [46], should be considered as an adjustable
parameter tuned to represent crack growth. It needs to be
tuned on specimens containing cracks.

Experiments show that the crack initiates with a flat tri-
angle and propagates in a slant mode of ductile tearing.
Simulation of flat to slant transition was performed in
Ref. [47] in the case of dynamic crack growth but no
attempt was made to compare results with actual tests.
The transition was also modelled in Ref. [48] but matching
simultaneously crack paths and load–displacement curves
was not possible. More recently the flat to slant transition
was obtained in Ref. [49,50] but comparison with experi-
ments was also missing. Due to the difficulties en countered
to model the transition, the crack is also modelled here as
being flat. Material parameters were adjusted to match
both load levels and crack lengths. The same solution
was adopted in Ref. [21] using the Rousselier model [51]
and in Ref. [52] using a 3-D cohesive zone model.

The finite strain formulation is described in Appendix A
and the simulation technique is explained in Appendix B.

6. Parameter identification

6.1. Procedure for the naturally aged T351 material

The main material characteristics that are accounted for
in the model are: (i) plastic behaviour, consisting of isotro-
pic/kinematic hardening and plastic anisotropy; (ii) void
growth; and (iii) nucleation of voids.



Fig. 7. Example of a 2-D unit cell mesh for loading in the L (vertical)
direction. The anisotropic void shape/pore elongation in L can be seen.
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For the description of the plastic behaviour the material
defects such as initial porosity and void nucleation at
coarse second-phase particles needs to be incorporated
as volume fractions are high enough for the present mate-
rial to influence the overall structural behaviour. The
fitting of the parameters associated with each of these
components is conducted in stages. To fit void growth
parameters, unit cell calculations will be used as this has
the advantage of providing physical justification to the fit-
ting parameters [53]. In the present identification method
the void growth parameters will be fitted before fitting
the plastic behaviour using a simplified plastic behaviour
that does not account for plastic anisotropy and kinematic
hardening. This is justified by the fact that plastic anisot-
ropy is fairly weak and kinematic hardening only influ-
ences the material behaviour for strains that are
substantially lower than at coalescence. The parameters
for void sheeting and nucleation of voids on a smaller
population of second-phase particles will be identified
for tests on Kahn specimens. An overview over the differ-
ent steps and parameters of the identification procedure is
given in Table 4. The procedure is explained in detail in
the following sections.
6.1.1. Identification procedure step 1

2-D axisymmetric unit cell calculations for different
stress triaxialities (0.85, 1.00, 1.25, 1.50) have been carried
out. The stress triaxialities correspond to values found in
finite-element analyses of crack propagation in Kahn tear
test specimens. The unit cell is a cylinder with a height of
2H0 (oriented in the loading direction) and radius R0 (see
Fig. 7). Periodic boundary conditions are used. The initial
porosity is set at 0.34% (determined via microcomputed
tomography) and the initial cell aspect ratio H0/R0 is set
equal to the measured mean Feret dimensions ratios for
Voronoi cells around pores and particles, which provides
H0/R0 = 1. To enhance calculation speed, cell calculations
Table 4
Parameter identification procedure for the naturally aged (T3) condition.

Step (1)Void growth parameters: fitting the model to unit cell calculations usi

Identification of: Tvergaard Fitting parameter:
Anisotropic void growth parameters:

Step (2)Parameters to fit isotropic/kinematic hardening and plastic anisotropy
Simulation of tensile and EU2 tests with initialized parameters and pa

Identification of: Isotropic hardening:
Kinematic hardening:
Plastic anisotropy:

Step (3)Parameters for nucleation of 2nd population of 2nd phase particles: Tr
stress CMOD curves

Identification of: Critical strains for nucleation
at 2nd population
of 2nd phase particles:
Element height:
were carried out on 2-D meshes. Here for every loading
direction (L, T, S) different axisymmetric 2-D meshes are
used to account for the average initial pore Feret dimen-
sions in the loading direction obtained from the tomogra-
phy data of the as-received material. The cavity is
assumed to be a different ellipsoid for each loading direc-
tion (L, T, S): only the cavity dimension in the direction
in which the loads are applied corresponds to the measured
average dimension. The other void dimensions are given by
the geometrical average of the two other Feret dimensions.
For instance, for the case of L-direction loading the void
size is given by (see also Fig. 7):

Rz ¼ l=2

Rx ¼
ffiffiffiffi
ts
p

=2
ð11Þ

where l, t, s are the measured initial average pore Feret
dimensions of the material (see Table 2) and Rz and Rx
ng an automatic optimization procedure

q1

aTT aLL aSS

: (a) Numerical simulation of prestraining by 2% in rolling direction; (b)
rameter fitting using an automatic optimization procedure

R0 K1 k1

C D

ci = LL,. . .,SL b
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Fig. 8. Results of unit cell calculations for rotation symmetric void cells for different directions at a stress triaxiality of s = 1.25: (a) comparison of unit cell
calculations for b = 4 (von Mises) and b = 8; (b) comparison of unit cell calculations for b = 8 and fitted anisotropic GTN element results (coalescence
points are indicated by open square symbols) (alloy in T3 condition; b = 8).

Table 5
Parameters for the naturally aged (T3) material simulations.

a) Elastic–plastic behaviour

E in GPa m R0 in MPa K1 k1

70 0.3 237 1.43 6.90

b) Kinematic hardening

C in MPa D

14947 261

c) Plastic anisotropy

cLL cTT cSS ci = LT,TS,SL b

1.1 1.14 0.904 1.0 8

d) Void anisotropy

aTT aLL aSS q1 fc d
0.967 0.322 1.46 1.81 4.5% 3.0

e) Damage

f0 in % fn in % pcrit L in % pcrit T in % A02
n

0.34 0.45 35 42 30

f) Element sizes

Height: Width: Through-thickness:
100 lm 100 lm 533 lm
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Fig. 9. Results of unit cell calculations of rotation symmetric void cells,
critical strains at coalescence for different stress triaxialities and loading in
the L and T directions (alloy in T3 condition; b = 8).
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are major and minor axis of the pore ellipse. The initial
void volume fraction is 0.34% for all calculations. Fig. 8a
shows the results of a unit cell calculation in terms of defor-
mation and evolution of void volume fraction for a stress
triaxiality of 1.25 for the three loading directions and for
different values of b, which is the exponent influencing
the yield surface shape as described in Section 5 (b = 4 cor-
responds to the von Mises criterion and b = 8 is closer to
the Tresca criterion). An initial identification of the param-
eter b via simulations of EU2 samples and tensile tests on
smooth samples neglecting material softening through
voids and comparison to experiments lead to b = 8. Values
higher than 4 are consistent with values given in the litera-
ture for Al alloys [2,20]. It can be seen that void growth and
coalescence (abrupt slope change corresponds to coales-
cence) occurs at larger deformation for loading in the L
direction than for loading in the T and S directions
(Fig. 8a). This trend is consistent with the anisotropic void
growth prediction made by the Gologanu–Leblond–Dev-
aux model [22,23]. It can also be seen that the plasticity cri-
terion influences the results substantially: void growth and
coalescence occurs faster for the b = 8 setting than for the
von Mises criterion. The parameter identification is per-
formed using an optimization algorithm and using an elas-
tic–plastic material fitted to L direction tensile test data.
Comparison is made for void volume fraction and force
evolution. Fig. 8b shows the results of a calculation with
a GTN material element using fitted anisotropy parameters
for the three different directions. For all subsequent calcu-
lations the critical void volume fraction fc is set to 4.5%,
which represents an average of the values found in unit cell
calculations for different directions and stress triaxilities.
The weighting factor d is set to 3.0. The results of the fitting
of the parameters q1, aLL, aTT, aSS (see also Eq. (5)) are
shown in Table 5.

Fig. 9 shows the critical strains at coalescence obtained
from unit cell calculations at different stress triaxalities for
the L and T loading directions. The difference between crit-
ical strain for L and T loading are the higher the lower the
stress triaxiality. The higher the stress triaxiality, the lower
the strain at coalescence.
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6.1.2. Identification procedure step 2

To simulate the prestraining, an ‘‘imaginary” material,
whose properties are supposedly close to the real non-pre-
strained material, is used which is prestrained in the simu-
lation through loading on a volume element by 2% in the
rolling direction L. Subsequently, the prestrained material,
whose parameters are initialized during the prestraining, is
used to simulate tensile and EU2 tests in the L and T direc-
tions. The simulation results are fitted to the experimental
results using a simplex optimization algorithm. Parameters
for isotropic hardening, kinematic hardening and plastic
anisotropy are identified simultaneously in this optimiza-
tion process. Coefficients cLT,TS,SL play a limited role and
are assumed to be equal to 1 as the corresponding shear
stresses are close to zero. The following law for the isotro-
pic hardening is used:

RðpÞ ¼ R0½1þ K1ð1� e�k1pÞ�: ð12Þ
The values for void growth parameters (q1, aLL, aTT,

aSS) obtained in step 1 are used. The nucleation of voids
on a first population of coarse second-phase particles is
taken into account for parameter fitting. Microtomogra-
phy studies on the material have shown that a certain strain
is needed until all coarser second-phase particles are frac-
tured [41]. To represent this effect A1

n is expressed as:

A1
n ¼

A01
n

0

for ps 6 p 6 pe

otherwise

(
; ð13Þ

where A01
n is a constant. Nucleation starts at the beginning

of the deformation (ps = 0) and ends at pe = 10% strain.
This means that the entire volume fraction of coarse sec-
ond-phase particles (0.4%) is considered to have ‘‘trans-
formed” into voids at 10% strain.

6.1.3. Identification procedure step 3
Fig. 10 shows the results of a calculation of Kahn tear

tests using the parameters obtained from the first two opti-
mization processes. It can be seen that the anisotropic void
growth parameters (aLL, aTT, aSS) do cause a toughness
anisotropy in this calculation. It shows that the use of the
anisotropic void growth parameters may be an alternative
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Fig. 10. Simulation of the Kahn tear tests (for alloy in T3 condition)
without second nucleation for different mesh sizes (100 and 50 lm element
height).
to the Gologanu–Leblond–Devaux model [22,23]. It has
been suggested in Ref. [42] that the height of the localization
band should be used as the element height. From tomogra-
phy data it can be seen that the mesh height used (100 lm)
may be a reasonable localization band height.

However, the maximum loads as well as the propagation
loads are overestimated for a mesh height of 100 lm. As
shown in Fig. 10 with an element height of 50 lm, the
propagation loads are reduced but still higher than the
experimentally found loads. The simulation carried out
here does not, however, account for shear decohesion or
void sheeting that have been observed experimentally.

In order to be able to fit the descending curve part of the
Kahn tear tests it is therefore suggested here to use different
critical strains for each loading direction at which the
nucleation at a small population of second-phase particles
starts. A2

n controls nucleation of voids at a second popula-
tion of smaller second-phase particles leading to coales-
cence. For the L and T directions different critical strains
(pcrit L, pcrit T) are used:

A2
n ¼

A02
n

0

for pcriti 6 p

otherwise

(
; ð14Þ

A02
n has high values so that the material is almost immedi-

ately breaking when the critical strains are reached.
Using different critical strains is a simplified method to

represent damage and coalescence anisotropy and may,
for example, be justified by an anisotropic distribution
and the shape of small second-phase particles, such as dis-
persoids (see Fig. 2).

The final parameters found in the optimization and
other measured parameters are given in Table 5. They pro-
vide mostly excellent fits to the data (see the next section).

6.2. Procedure for the artificially aged (T8) material

The parameter identification for the artificially aged T8
material has been carried out similarly to the naturally aged
material (see Table 6). However, as the artificially aged mate-
rial hardly exhibited any effect of kinematic hardening and
plastic anisotropy, these features will not be accounted for
in the model. For this reason no prestraining is simulated.
 0

 50

 100

 150

 200

 0  0.5  1  1.5  2  2.5  3  3.5  4

F/
A

0 i
n 

M
Pa

CMOD in mm

Kahn L-T experimental
Kahn T-L experimental

Kahn L-T simul.
Kahn T-L simul.

Fig. 11. Simulation of the Kahn tear tests for pcrit L = pcrit T = 42%
(T3 condition).



Table 6
Parameters for simulations of the artificially aged (T8) material.

a) Elastic–plastic behaviour

E in GPa m R0 in MPa K0 K1 k1 K2 k2

70 0.3 400 0.00832 0.261 16.8 0.115 704

b) Plastic flow b = 12

c) Void anisotropy

aTT aLL aSS q1 fc d
1.015 0.518 1.317 2.2 4.5% 3.0

d) Damage

f0 fn pcrit L pcrit T A02
n

0.34% 0.45% 25% 31% 30.0

e) Element sizes

Height: Width: Through-thickness
100 lm 100 lm 533 lm
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It has been found that a good EU2 curve fit can only be
obtained for b = 12 (close to the Tresca criterion). For
b = 4 (the von Mises criterion) the loads were too high.
The following equation is used for isotropic hardening:

RðpÞ ¼ R0½1þ K0p þ K1ð1� e�k1pÞ þ K2ð1� e�k2pÞ�: ð15Þ
The parameters used for the artificially aged material sim-
ulations are shown in Table 6.

7. Model predictions

The simulation results for tests on small samples with
the fitted parameters are shown here. Using these parame-
ters simulations for tests on large M(T) samples were sub-
sequently performed.

7.1. Comparison with data for small specimens and M(T)

specimens

Figs. 3 and 4 show the simulation and experimental
results for tensile and Kahn tear testing for the two testing
directions and the different heat treatment conditions. A
good fit is achieved for the tensile curves (see Fig. 3). The
EU2 curves (not presented here) are well predicted for most
of the test, but the samples break earlier in the simulations
as compared to the experiments, a discrepancy that may be
due to the fitting of fracture parameters at higher stress
triaxility. The Kahn tear test curves (Fig. 4) are well fitted
for the T–L naturally aged and T–L artificially aged mate-
rials. The loads obtained from the M(T) simulation of the
naturally aged T–L sample are only slightly above the
experimental results (see Fig. 5a). The overall prediction
is good. Whilst the artificially aged T–L sample loads are
slightly overestimated in the simulation, the maximum load
ratio between L–T and T–L testing is well represented. The
good results of the simulations carried out for M(T) samples
(see Fig. 5) provide an independent validation of the model’s
predictive capabilities (this data has not been used for
parameter identification), and thus shows that this method
of accounting for toughness anisotropy may represent
toughness anisotropy on samples of very different sizes.

7.2. Parametric study on the naturally aged (T3) material:

study with the same critical strain (for pcrit L = pcrit T) for
both loading configurations

Fig. 11 shows a simulation for the naturally aged material
where the same critical strains for the T–L and L–T direc-
tions are applied for the second-stage nucleation of voids
at small particles. It can be seen that only the first part of
the curves is slightly different due to the kinematic hardening
and plastic anisotropy. This is consistent with the idea that in
this part of the loading the material behaviour is mainly gov-
erned by plastic properties. It can be seen that from maxi-
mum load onwards the two curves almost superpose. This
implies that neither kinematic hardening nor plastic anisot-
ropy are the main cause of the toughness anisotropy. This
simulation also shows that the anisotropic growth parame-
ters (aLL, aTT, aSS) have a minor effect in this simulation,
and that they cannot explain the toughness anisotropy. Unit
cell calculations show that coalescence through impinge-
ment occurs at substantially higher strains than the strains
(pc) at which the second-stage nucleation of voids starts,
especially at lower stress triaxialities, so that the influence
of the anisotropic void growth parameters (aLL, aTT, aSS) is
reduced through this second-stage nucleation of voids (also
see Fig. 9).

8. Discussion

In a previous finite-element study Pardoen and Hutchison
[26] have linked anisotropic shape of initial voids to frac-



T.F. Morgeneyer et al. / Acta Materialia 57 (2009) 3902–3915 3913
ture toughness anisotropy (JIC). In Ref. [10] a comparison
between these results and the results on the AA2139 alloy
in T8 condition has been made in terms of initial void
aspect ratio and toughness anisotropy, in terms of unit ini-
tiation energies, at a high level of stress triaxiality. Despite
the model simplifications a similar trend in toughness
anisotropy has been found for similar initial void volume
fractions, consistent with the initial anisotropic void shape
controlling the fracture toughness anisotropy.

The present SRCT results provide new insights into frac-
ture mechanisms in the crack initiation region at high stress
triaxiality, indicating that coalescence mechanisms involving
nucleation at a second population of small second-phase
particles may play a role in this stress state. The model pre-
sented here can reproduce a similar influence of anisotropic
initial void shape on fracture toughness anisotropy as the
model of Pardoen and Hutchinson [26] when neglecting
nucleation at small particles. However, it is found that for
reproducing actual (absolute) toughness values and the load
evolution at lower levels of stress triaxiality, an anisotropic
nucleation process at the small second-phase particle popu-
lation must be included in the model. Thus the present mod-
elling indicates that initial void shape anisotropy may not be
the only reason for toughness anisotropy and that aniso-
tropic coalescence mechanisms involving a small population
of second-phase particles, such as dispersoids [54,55], that
display anisotropic morphologies and distributions (see
Fig. 2) could substantially contribute to toughness anisot-
ropy. The necessity to introduce different nucleation strains
for different directions may also be linked to the distribution
of initial porosity and coarse intermetallic particles: the mea-
surement of the mean aspect ratio of Feret dimensions of
Voronoi cells around particles and pores provided a value
close to one for our material. However, stringers of pores
and second-phase particles were observed (see Section 3.1).
The heterogeneous distribution of pores and particles may
be at the origin of the apparently average isotropic pore
and particle distribution measurement. It has been identified
that clustering and alignment of pores and particles in the
crack propagation region [7,56] can reduce toughness, and
TL orientation tests in the present work clearly showed pref-
erential crack advance along individual particle chains
(‘‘tongues” appearing at the crack front, as shown in
Fig. 6a and b, and also in Ref. [10]). For a better understand-
ing of ductile fracture anisotropy, additional experimental
investigation and modelling of pore and particle stringers,
and the corresponding percolation of damage though such
a heterogeneous structure, may be expected to provide valu-
able future insights. It is also worth noting that modelling of
slant fracture has not been attempted in the present study
and the use of the Lode parameter as suggested in Ref.
[49,57] should be considered to address this issue.

9. Conclusions

Mechanical tests on smooth and notched specimens of
different sizes have been carried out in two loading directions
for T351 and T8 heat-treated materials. The T351 material
displays isotropic and kinematic hardening, and some plastic
anisotropy also plays a role. The T8 material is plastically
isotropic. Fractography of Kahn samples has revealed frac-
ture mechanisms linked to coarse voiding and shear decohe-
sion, especially in the propagation region. Some alignment of
dimple stringers is prevalent on the T–L sample fracture sur-
faces in the rolling direction. SRCT studies of arrested cracks
in the crack initiation region have revealed the unexpected
presence of coalescence through narrow regions that can
be linked to void nucleation at a small population of sec-
ond-phase particles. Anisotropic initial void shape has been
identified through SRCT studies of the as-received material.
No significant anisotropic average distribution of pores and
particles could be measured using Feret dimensions around
Voronoi cells. Dispersoid particles are elongated in the L
direction of the material.

A model based on the GTN approach has been devel-
oped incorporating: (i) anisotropic initial void shape and
growth; (ii) plastic behaviour, including isotropic/kine-
matic hardening and plastic anisotropy; and (iii) nucleation
at a second population of second-phase particles leading to
coalescence via narrow crack regions.

For the first time a model for kinematic hardening
accounting for ductile damage has been successfully applied.
A new simple method to account for initially anisotropic
void shape and growth is suggested that is easier to imple-
ment than other approaches and is not restricted to axisym-
metric cavities. Parameters have been fitted on mechanical
testing results of small samples. It has been found that nei-
ther kinematic hardening nor anisotropic void shape can
fully describe the fracture toughness anisotropy. It is pro-
posed to account for coalescence and nucleation at a second
population of small second-phase particles via nucleation at
different critical strains for the different material directions
which may be linked to the anisotropic shape and/or distri-
bution of small second-phase particles such as dispersoids.

Simulation of fracture of large M(T) samples using
parameters obtained by fitting on small sample tests shows
the good predictive capabilities of the model; the fracture
toughness anisotropy on these M(T) panels is correctly pre-
dicted. The effect of prestrain and plastic anisotropy is rel-
atively weak for the present material. However, it may be
important to use these model features to describe the
behaviour of other materials (e.g. steel X100).
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Appendix A. Finite-strain formulation

Ductile rupture is always accompanied by large
deformations so that a finite-strain formalism must be
used when implementing constitutive equations. Specific
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implementations using the finite strain formalism proposed
by Simo [58] and Simo and Miehe [59] have been used by
Mahnken [60] and Reusch et al. [61]. A computationally
more efficient treatment of finite strain may be obtained
using generic formulations based on reference frames which
facilitate keeping the standard small strain formulation, i.e.
using an additive strain decomposition (_e ¼ _ee þ _ep) [62].
Invariant stress and strain rate measures s and _e are defined
by transport of the Cauchy stress r and the deformation rate
tensor rate D into the co-rotational reference frame which is
characterized by the rotation Qc : s ¼ Qc � r � QT

c and
_e ¼ Qc � D � QT

c . The evolution law for Qc is expressed as:

_Qc ¼ X:Qc with _Qcðt ¼ 0Þ ¼ 1; ð16Þ

where D and X are, respectively, the symmetric and the
skew-symmetric parts of the velocity field gradient. The
corresponding objective stress rate is the Jaumann rate.

Appendix B. Simulation technique

The modified GTN model was implemented in the finite-
element software Zebulon, developed at Ecole des Mines de
Paris [63,64]. Similar meshes as in Ref. [21] have been used.
An implicit scheme is used to integrate the constitutive
equations. The consistent tangent matrix is computed using
the method proposed in Ref. [65]. The material is consid-
ered as broken when f* reaches 1/q1. In that case, the mate-
rial behaviour is replaced by an elastic behaviour with a
very low stiffness (Young’s modulus: Eb = 1 MPa). A sim-
ilar technique was used in Ref. [63] showing convergence of
the results for sufficiently low values of the Young’s mod-
ulus Eb. Gauss points where these conditions are met are
referred to as ‘‘broken Gauss points”. Calculations were
done using 3-D brick linear elements with full integration
using a B-bar method to control volume change in each ele-
ment [66]. When all Gauss points in an element are ‘‘bro-
ken”, the element is removed from the calculation.
Convergence in terms of macroscopic load and local dam-
age growth was checked as proposed in Ref. [59]. Usual
symmetry conditions are accounted for in order to reduce
the size of the calculations.
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